Some math related code for calculatin binomial coef, nth-fibonacci and sin

This commit is contained in:
Imbus 2025-06-01 14:34:58 +02:00
parent 65d8891c0e
commit 715f6af296
3 changed files with 136 additions and 0 deletions

38
bincoef.c Normal file
View file

@ -0,0 +1,38 @@
#include <stdio.h>
/**
* @brief Computes the binomial coefficient "n choose k" (nCk).
*
* This function calculates the number of ways to choose k elements from a set
* of n elements without repetition and without order. It uses an efficient
* multiplicative approach to avoid large intermediate factorials.
*
* @param n The total number of elements.
* @param k The number of elements to choose.
* @return The computed binomial coefficient (n choose k), or 0 if k > n.
*/
unsigned long long binomial_coefficient(unsigned int n, unsigned int k);
unsigned long long binomial_coefficient(unsigned int n, unsigned int k) {
if (k > n)
return 0;
if (k == 0 || k == n)
return 1;
if (k > n - k)
k = n - k;
unsigned long long result = 1;
for (unsigned int i = 1; i <= k; ++i) {
result *= n - (k - i);
result /= i;
}
return result;
}
int main() {
unsigned int n = 10, k = 3;
printf("C(%u, %u) = %llu\n", n, k, binomial_coefficient(n, k));
return 0;
}

62
fibmat.c Normal file
View file

@ -0,0 +1,62 @@
#include <stdio.h>
#include <stdint.h>
/**
* @brief Computes the n-th Fibonacci number using matrix exponentiation.
*
* This implementation uses the identity:
* [F(n+1) F(n) ] = [1 1]^n
* [F(n) F(n-1)] [1 0]
*
* The matrix is exponentiated in O(log n) time using exponentiation by squaring.
*
* @param n The index of the Fibonacci number to compute.
* @return The n-th Fibonacci number.
*/
uint64_t fibonacci_matrix(uint32_t n);
// 2x2 matrix structure for Fibonacci computation
typedef struct {
uint64_t a, b;
uint64_t c, d;
} FibMatrix;
/**
* @brief Multiplies two 2x2 matrices.
*/
static FibMatrix matrix_multiply(FibMatrix x, FibMatrix y) {
FibMatrix result;
result.a = x.a * y.a + x.b * y.c;
result.b = x.a * y.b + x.b * y.d;
result.c = x.c * y.a + x.d * y.c;
result.d = x.c * y.b + x.d * y.d;
return result;
}
/**
* @brief Raises a 2x2 matrix to the power of n using exponentiation by squaring.
*/
static FibMatrix matrix_power(FibMatrix base, uint32_t n) {
FibMatrix result = {1, 0, 0, 1}; // Identity matrix
while (n > 0) {
if (n % 2 == 1)
result = matrix_multiply(result, base);
base = matrix_multiply(base, base);
n /= 2;
}
return result;
}
uint64_t fibonacci_matrix(uint32_t n) {
if (n == 0) return 0;
FibMatrix base = {1, 1, 1, 0};
FibMatrix result = matrix_power(base, n - 1);
return result.a;
}
int main() {
for (uint32_t i = 0; i <= 20; ++i) {
printf("F(%u) = %lu\n", i, fibonacci_matrix(i));
}
return 0;
}

36
sin.c Normal file
View file

@ -0,0 +1,36 @@
#include <stdio.h>
#define HALFPI 1.5707963268
// Compute factorial iteratively
double factorial(int n) {
double result = 1.0;
for (int i = 2; i <= n; ++i) {
result *= i;
}
return result;
}
double abs_double(double x) { return x < 0 ? -x : x; }
// SICP-style iterative approximation for sin(x)
double sin_iter(double x) {
double term = x; // First term of the series
double sum = term; // Initial sum
// double prev_sum;
int n = 1; // Starting from x^3/3!
do {
// prev_sum = sum;
term *= -x * x / ((2 * n) * (2 * n + 1)); // Next term in series
sum += term;
++n;
} while (abs_double(term) > 1e-10); // Stop when term is sufficiently small
return sum;
}
int main() {
printf("Approximated sin(pi/2) = %.10f\n", sin_iter(HALFPI));
return 0;
}