Some math related code for calculatin binomial coef, nth-fibonacci and sin
This commit is contained in:
parent
65d8891c0e
commit
715f6af296
3 changed files with 136 additions and 0 deletions
62
fibmat.c
Normal file
62
fibmat.c
Normal file
|
|
@ -0,0 +1,62 @@
|
|||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/**
|
||||
* @brief Computes the n-th Fibonacci number using matrix exponentiation.
|
||||
*
|
||||
* This implementation uses the identity:
|
||||
* [F(n+1) F(n) ] = [1 1]^n
|
||||
* [F(n) F(n-1)] [1 0]
|
||||
*
|
||||
* The matrix is exponentiated in O(log n) time using exponentiation by squaring.
|
||||
*
|
||||
* @param n The index of the Fibonacci number to compute.
|
||||
* @return The n-th Fibonacci number.
|
||||
*/
|
||||
uint64_t fibonacci_matrix(uint32_t n);
|
||||
|
||||
// 2x2 matrix structure for Fibonacci computation
|
||||
typedef struct {
|
||||
uint64_t a, b;
|
||||
uint64_t c, d;
|
||||
} FibMatrix;
|
||||
|
||||
/**
|
||||
* @brief Multiplies two 2x2 matrices.
|
||||
*/
|
||||
static FibMatrix matrix_multiply(FibMatrix x, FibMatrix y) {
|
||||
FibMatrix result;
|
||||
result.a = x.a * y.a + x.b * y.c;
|
||||
result.b = x.a * y.b + x.b * y.d;
|
||||
result.c = x.c * y.a + x.d * y.c;
|
||||
result.d = x.c * y.b + x.d * y.d;
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Raises a 2x2 matrix to the power of n using exponentiation by squaring.
|
||||
*/
|
||||
static FibMatrix matrix_power(FibMatrix base, uint32_t n) {
|
||||
FibMatrix result = {1, 0, 0, 1}; // Identity matrix
|
||||
while (n > 0) {
|
||||
if (n % 2 == 1)
|
||||
result = matrix_multiply(result, base);
|
||||
base = matrix_multiply(base, base);
|
||||
n /= 2;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
uint64_t fibonacci_matrix(uint32_t n) {
|
||||
if (n == 0) return 0;
|
||||
FibMatrix base = {1, 1, 1, 0};
|
||||
FibMatrix result = matrix_power(base, n - 1);
|
||||
return result.a;
|
||||
}
|
||||
|
||||
int main() {
|
||||
for (uint32_t i = 0; i <= 20; ++i) {
|
||||
printf("F(%u) = %lu\n", i, fibonacci_matrix(i));
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue