#include #include #include /** * @brief Calculates (a * b) % c taking into account that a * b might overflow * * @param a First factor * @param b Second factor * @param mod The modulo * @return Resulting value */ uint64_t mulmod(uint64_t a, uint64_t b, uint64_t mod); /** * @brief Modular exponentiation * * @param base * @param exponent * @param mod * @return */ uint64_t modulo(uint64_t base, uint64_t exponent, uint64_t mod); /** * @brief Miller-Rabin Primality Test * * This function performs the Miller-Rabin primality test to determine whether * a given number is prime. The number of iterations increases the accuracy of * the test but also increases computation time. * * @param p The number to test for primality (must be a positive integer). * @param iteration The number of test rounds to perform (higher means more * accuracy). * @return 1 if the number is probably prime, 0 if it is composite. */ uint32_t miller_rabin(uint64_t p, uint32_t iteration); /* Below code is source, not header */ /************************************/ uint64_t mulmod(uint64_t a, uint64_t b, uint64_t mod) { uint64_t x = 0, y = a % mod; while (b > 0) { if (b % 2 == 1) { x = (x + y) % mod; } y = (y * 2) % mod; b /= 2; } return x % mod; } uint64_t modulo(uint64_t base, uint64_t exponent, uint64_t mod) { uint64_t x = 1; uint64_t y = base; while (exponent > 0) { if (exponent % 2 == 1) x = (x * y) % mod; y = (y * y) % mod; exponent = exponent / 2; } return x % mod; } uint32_t miller_rabin(uint64_t p, uint32_t iteration) { uint32_t i; uint64_t s; if (p < 2) { return 0; } if (p != 2 && p % 2 == 0) { return 0; } s = p - 1; while (s % 2 == 0) { s /= 2; } for (i = 0; i < iteration; i++) { uint64_t a = rand() % (p - 1) + 1, temp = s; uint64_t mod = modulo(a, temp, p); while (temp != p - 1 && mod != 1 && mod != p - 1) { mod = mulmod(mod, mod, p); temp *= 2; } if (mod != p - 1 && temp % 2 == 0) { return 0; } } return 1; }