CPlay/linalg/main.c
2025-05-23 22:14:06 +02:00

493 lines
12 KiB
C

#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
/*
* Simple linear algebra mat/vec operations
*
* TODO: Normalizations
* TODO: Ensure suitable test coverade
* TODO: Mat3 adjoint should use a cofactor and a transpose function
*/
/**
* @brief A 2x2 matrix stored in row-major order.
*
* The elements are laid out as:
* [ arr[0] arr[1] ]
* [ arr[2] arr[3] ]
*/
typedef struct Mat2 {
float arr[4];
} Mat2;
/**
* @brief A 3x3 matrix stored in row-major order.
*
* The elements are laid out as:
* [ arr[0] arr[1] arr[2] ]
* [ arr[3] arr[4] arr[5] ]
* [ arr[6] arr[7] arr[8] ]
*/
typedef struct Mat3 {
float arr[9];
} Mat3;
/**
* @brief A 2D vector with x and y components.
*/
typedef struct Vec2 {
float x, y;
} Vec2;
/**
* @brief A 3D vector with x, y, and z components.
*/
typedef struct Vec3 {
float x, y, z;
} Vec3;
/**
* @brief Computes the dot product of two 3D vectors.
*
* @param a Pointer to the first vector.
* @param b Pointer to the second vector.
* @return The dot product (a * b).
*/
inline float vec3_dot(const Vec3 *a, const Vec3 *b);
/**
* @brief Computes the cross product of two 3D vectors.
*
* @param a Pointer to the first vector.
* @param b Pointer to the second vector.
* @return The cross product vector (a x b).
*/
Vec3 vec3_cross(const Vec3 *a, const Vec3 *b);
/**
* @brief Subtracts one 3D vector from another.
*
* @param a Pointer to the minuend vector.
* @param b Pointer to the subtrahend vector.
* @return The resulting vector (a - b).
*/
Vec3 vec3_sub(const Vec3 *a, const Vec3 *b);
/**
* @brief Adds two 3D vectors.
*
* @param a Pointer to the first vector.
* @param b Pointer to the second vector.
* @return The resulting vector (a + b).
*/
Vec3 vec3_add(const Vec3 *a, const Vec3 *b);
/**
* @brief Scales a 3D vector by a scalar value.
*
* @param a Pointer to the vector to scale.
* @param scalar The scalar value to multiply with the vector.
* @return The scaled vector (a * scalar).
*/
Vec3 vec3_scale(const Vec3 *a, const float scalar);
/**
* @brief Computes the dot product of two 2D vectors.
*
* @param a Pointer to the first vector.
* @param b Pointer to the second vector.
* @return The dot product (a * b).
*/
inline float vec2_dot(const Vec2 *a, const Vec2 *b);
/**
* @brief Subtracts one 2D vector from another.
*
* @param a Pointer to the minuend vector.
* @param b Pointer to the subtrahend vector.
* @return The resulting vector (a - b).
*/
Vec2 vec2_sub(const Vec2 *a, const Vec2 *b);
/**
* @brief Adds two 2D vectors.
*
* @param a Pointer to the first vector.
* @param b Pointer to the second vector.
* @return The resulting vector (a + b).
*/
Vec2 vec2_add(const Vec2 *a, const Vec2 *b);
/**
* @brief Scales a 2D vector by a scalar value.
*
* @param a Pointer to the vector to scale.
* @param scalar The scalar value to multiply with the vector.
* @return The scaled vector (a * scalar).
*/
Vec2 vec2_scale(const Vec2 *a, const float scalar);
/**
* @brief Computes the determinant of a 2x2 matrix.
*
* @param m Pointer to the matrix.
* @return The determinant of the matrix.
*/
float mat2_det(const Mat2 *m);
/**
* @brief Computes the determinant of a 3x3 matrix (row-major order).
*
* @param m Pointer to the matrix.
* @return The determinant of the matrix.
*/
float mat3_det(const Mat3 *m);
/**
* @brief Multiplies two 2x2 matrices (row-major order).
*
* @param m1 Pointer to the first matrix.
* @param m2 Pointer to the second matrix.
* @return The resulting matrix product (m1 x m2).
*/
Mat2 mat2_mul(const Mat2 *m1, const Mat2 *m2);
/**
* @brief Multiplies two 3x3 matrices (row-major order).
*
* @param m1 Pointer to the first matrix.
* @param m2 Pointer to the second matrix.
* @return The resulting matrix product (m1 x m2).
*/
Mat3 mat3_mul(const Mat3 *m1, const Mat3 *m2);
/**
* @brief Checks if two 2x2 matrices are approximately equal.
*
* @param a Pointer to the first matrix.
* @param b Pointer to the second matrix.
* @param epsilon Tolerance for comparison.
* @return true if all elements are approximately equal within epsilon.
*/
bool mat2_approx_eq(const Mat2 *a, const Mat2 *b, float epsilon);
/**
* @brief Checks if two 3x3 matrices are approximately equal.
*
* @param a Pointer to the first matrix.
* @param b Pointer to the second matrix.
* @param epsilon Tolerance for comparison.
* @return true if all elements are approximately equal within epsilon.
*/
bool mat3_approx_eq(const Mat3 *a, const Mat3 *b, float epsilon);
/**
* @brief Checks if two 3x3 vectors are approximately equal.
*
* @param a Pointer to the first vector.
* @param b Pointer to the second vector.
* @param epsilon Tolerance for comparison.
* @return true if all elements are approximately equal within epsilon.
*/
bool vec3_approx_eq(const Vec3 *a, const Vec3 *b, float epsilon);
/**
* @brief Checks if two 2x2 vectors are approximately equal.
*
* @param a Pointer to the first vector.
* @param b Pointer to the second vector.
* @param epsilon Tolerance for comparison.
* @return true if all elements are approximately equal within epsilon.
*/
bool vec2_approx_eq(const Vec2 *a, const Vec2 *b, float epsilon);
/**
* @brief Computes the adjugate (adjoint) of a 2x2 matrix.
*
* The adjugate of a 2x2 matrix is obtained by swapping the diagonal elements
* and negating the off-diagonal elements.
*
* @param m Pointer to the 2x2 matrix.
* @return The adjugate of the input matrix.
*/
Mat2 mat2_adj(const Mat2 *m);
/**
* @brief Computes the adjugate (adjoint) of a 3x3 matrix.
*
* The adjugate of a 3x3 matrix is the transpose of its cofactor matrix.
* It is used in computing the inverse of the matrix.
*
* @param m Pointer to the 3x3 matrix.
* @return The adjugate of the input matrix.
*/
Mat3 mat3_adj(const Mat3 *m);
#define MAT2_AT(m, row, col) ((m)->arr[(col) * 2 + (row)])
#define MAT3_AT(m, row, col) ((m)->arr[(col) * 3 + (row)])
/* Header end... */
/* Row major */
#define MAT2_DET(a, b, c, d) ((a) * (d) - (b) * (c))
float mat3_det(const Mat3 *m) {
float m00 = MAT3_AT(m, 0, 0);
float m01 = MAT3_AT(m, 0, 1);
float m02 = MAT3_AT(m, 0, 2);
float m10 = MAT3_AT(m, 1, 0);
float m11 = MAT3_AT(m, 1, 1);
float m12 = MAT3_AT(m, 1, 2);
float m20 = MAT3_AT(m, 2, 0);
float m21 = MAT3_AT(m, 2, 1);
float m22 = MAT3_AT(m, 2, 2);
return m00 * (m11 * m22 - m12 * m21) - m01 * (m10 * m22 - m12 * m20) +
m02 * (m10 * m21 - m11 * m20);
}
inline float vec3_dot(const Vec3 *a, const Vec3 *b) {
return a->x * b->x + a->y * b->y + a->z * b->z;
}
Vec3 vec3_cross(const Vec3 *a, const Vec3 *b) {
Vec3 res = {.x = a->y * b->z - a->z * b->y,
.y = a->x * b->z - a->z * b->x,
.z = a->x * b->y - a->y * b->x};
return res;
}
Vec3 vec3_sub(const Vec3 *a, const Vec3 *b) {
Vec3 res = {
.x = a->x - b->x,
.y = a->y - b->y,
.z = a->z - b->z,
};
return res;
}
Vec3 vec3_add(const Vec3 *a, const Vec3 *b) {
Vec3 res = {
.x = a->x + b->x,
.y = a->y + b->y,
.z = a->z + b->z,
};
return res;
}
Vec3 vec3_scale(const Vec3 *a, const float scalar) {
Vec3 res = {
.x = a->x * scalar,
.y = a->y * scalar,
.z = a->z * scalar,
};
return res;
}
float vec2_dot(const Vec2 *a, const Vec2 *b) {
return a->x * b->x + a->y * b->y;
}
Vec2 vec2_sub(const Vec2 *a, const Vec2 *b) {
Vec2 res = {
.x = a->x - b->x,
.y = a->y - b->y,
};
return res;
}
Vec2 vec2_add(const Vec2 *a, const Vec2 *b) {
Vec2 res = {
.x = a->x + b->x,
.y = a->y + b->y,
};
return res;
}
Vec2 vec2_scale(const Vec2 *a, const float scalar) {
Vec2 res = {
.x = a->x * scalar,
.y = a->y * scalar,
};
return res;
}
Mat2 mat2_mul(const Mat2 *m1, const Mat2 *m2) {
Mat2 m3 = {.arr = {
MAT2_AT(m1, 0, 0) * MAT2_AT(m2, 0, 0) +
MAT2_AT(m1, 0, 1) * MAT2_AT(m2, 1, 0),
MAT2_AT(m1, 1, 0) * MAT2_AT(m2, 0, 0) +
MAT2_AT(m1, 1, 1) * MAT2_AT(m2, 1, 0),
MAT2_AT(m1, 0, 0) * MAT2_AT(m2, 0, 1) +
MAT2_AT(m1, 0, 1) * MAT2_AT(m2, 1, 1),
MAT2_AT(m1, 1, 0) * MAT2_AT(m2, 0, 1) +
MAT2_AT(m1, 1, 1) * MAT2_AT(m2, 1, 1),
}};
return m3;
}
Mat3 mat3_mul(const Mat3 *m1, const Mat3 *m2) {
Mat3 m3;
for (int col = 0; col < 3; ++col) {
for (int row = 0; row < 3; ++row) {
float sum = 0.0f;
for (int k = 0; k < 3; ++k) {
sum += MAT3_AT(m1, row, k) * MAT3_AT(m2, k, col);
}
m3.arr[col * 3 + row] = sum;
}
}
return m3;
}
void mat3_print(const Mat3 *m) {
for (int row = 0; row < 3; ++row) {
printf("| ");
for (int col = 0; col < 3; ++col) {
printf("%8.3f ", MAT3_AT(m, row, col));
}
printf("|\n");
}
}
bool mat2_approx_eq(const Mat2 *a, const Mat2 *b, float epsilon) {
for (int i = 0; i < 4; ++i) {
if (fabsf(a->arr[i] - b->arr[i]) > epsilon)
return false;
}
return true;
}
bool mat3_approx_eq(const Mat3 *a, const Mat3 *b, float epsilon) {
for (int i = 0; i < 9; ++i) {
if (fabsf(a->arr[i] - b->arr[i]) > epsilon)
return false;
}
return true;
}
bool vec2_approx_eq(const Vec2 *a, const Vec2 *b, float epsilon) {
return (fabsf(a->x - b->x) <= epsilon) && (fabsf(a->y - b->y) <= epsilon);
}
bool vec3_approx_eq(const Vec3 *a, const Vec3 *b, float epsilon) {
return (fabsf(a->x - b->x) <= epsilon) && (fabsf(a->y - b->y) <= epsilon) &&
(fabsf(a->z - b->z) <= epsilon);
}
Mat2 mat2_adj(const Mat2 *m) {
Mat2 res;
MAT2_AT(&res, 0, 0) = MAT2_AT(m, 1, 1);
MAT2_AT(&res, 0, 1) = -MAT2_AT(m, 0, 1);
MAT2_AT(&res, 1, 0) = -MAT2_AT(m, 1, 0);
MAT2_AT(&res, 1, 1) = MAT2_AT(m, 0, 0);
return res;
}
Mat3 mat3_adj(const Mat3 *m) {
Mat3 res;
const float a = MAT3_AT(m, 0, 0);
const float b = MAT3_AT(m, 0, 1);
const float c = MAT3_AT(m, 0, 2);
const float d = MAT3_AT(m, 1, 0);
const float e = MAT3_AT(m, 1, 1);
const float f = MAT3_AT(m, 1, 2);
const float g = MAT3_AT(m, 2, 0);
const float h = MAT3_AT(m, 2, 1);
const float i = MAT3_AT(m, 2, 2);
MAT3_AT(&res, 0, 0) = MAT2_DET(e, f, h, i);
MAT3_AT(&res, 1, 0) = -MAT2_DET(d, f, g, i);
MAT3_AT(&res, 2, 0) = MAT2_DET(d, e, g, h);
MAT3_AT(&res, 0, 1) = -MAT2_DET(b, c, h, i);
MAT3_AT(&res, 1, 1) = MAT2_DET(a, c, g, i);
MAT3_AT(&res, 2, 1) = -MAT2_DET(a, b, g, h);
MAT3_AT(&res, 0, 2) = MAT2_DET(b, c, e, f);
MAT3_AT(&res, 1, 2) = -MAT2_DET(a, c, d, f);
MAT3_AT(&res, 2, 2) = MAT2_DET(a, b, d, e);
return res;
}
/* Implem end */
int main(void) {
{
Mat3 m = {{1, 0, 0, 0, 1, 0, 0, 0, 1}};
Mat3 m3 = mat3_mul(&m, &m);
assert(mat3_approx_eq(&m3, &m, 0.01));
}
{
Mat3 m = {{1, 0, 0, 0, 1, 0, 0, 0, 1}};
float d = mat3_det(&m);
printf("Determinant: %f\n", d);
MAT3_AT(&m, 0, 0) = 2;
d = mat3_det(&m);
printf("Determinant: %f\n", d);
}
{
/* Vector tests for addition, subtraction and multiplication (scale) */
/* Vec3 */
Vec3 a3 = {2, 2, 2};
Vec3 b3 = {1, 1, 1};
Vec3 c3_sub = vec3_sub(&a3, &b3);
Vec3 c3_add = vec3_add(&a3, &b3);
Vec3 m3 = vec3_scale(&a3, 1.5);
Vec3 v3_expected_add = {3, 3, 3};
assert(vec3_approx_eq(&c3_sub, &b3, 0.01));
assert(vec3_approx_eq(&c3_add, &v3_expected_add, 0.01));
assert(vec3_approx_eq(&m3, &v3_expected_add, 0.01));
/* Vec2 */
Vec2 a2 = {2, 2};
Vec2 b2 = {1, 1};
Vec2 c2_sub = vec2_sub(&a2, &b2);
Vec2 c2_add = vec2_add(&a2, &b2);
Vec2 m2 = vec2_scale(&a2, 1.5);
Vec2 v2_expected_add = {3, 3};
assert(vec2_approx_eq(&c2_sub, &b2, 0.01));
assert(vec2_approx_eq(&c2_add, &v2_expected_add, 0.01));
assert(vec2_approx_eq(&m2, &v2_expected_add, 0.01));
}
{
Vec3 a = {10, 10, 10};
Vec3 b = {5, 5, 5};
Vec3 c = vec3_cross(&a, &b);
printf("{ Vec3: %f, %f, %f }\n", c.x, c.y, c.z);
}
{
Vec3 a = {0, 1, 0};
Vec3 b = {0, 0, 1};
Vec3 c = vec3_cross(&a, &b);
printf("{ Vec3: %f, %f, %f }\n", c.x, c.y, c.z);
}
return 0;
}