427 lines
10 KiB
C
427 lines
10 KiB
C
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
|
|
/*
|
|
* Simple linear algebra mat/vec operations
|
|
*
|
|
* TODO: Normalizations
|
|
*/
|
|
|
|
/**
|
|
* @brief A 2x2 matrix stored in row-major order.
|
|
*
|
|
* The elements are laid out as:
|
|
* [ arr[0] arr[1] ]
|
|
* [ arr[2] arr[3] ]
|
|
*/
|
|
typedef struct Mat2 {
|
|
float arr[4];
|
|
} Mat2;
|
|
|
|
/**
|
|
* @brief A 3x3 matrix stored in row-major order.
|
|
*
|
|
* The elements are laid out as:
|
|
* [ arr[0] arr[1] arr[2] ]
|
|
* [ arr[3] arr[4] arr[5] ]
|
|
* [ arr[6] arr[7] arr[8] ]
|
|
*/
|
|
typedef struct Mat3 {
|
|
float arr[9];
|
|
} Mat3;
|
|
|
|
/**
|
|
* @brief A 2D vector with x and y components.
|
|
*/
|
|
typedef struct Vec2 {
|
|
float x, y;
|
|
} Vec2;
|
|
|
|
/**
|
|
* @brief A 3D vector with x, y, and z components.
|
|
*/
|
|
typedef struct Vec3 {
|
|
float x, y, z;
|
|
} Vec3;
|
|
|
|
/**
|
|
* @brief Computes the dot product of two 3D vectors.
|
|
*
|
|
* @param a Pointer to the first vector.
|
|
* @param b Pointer to the second vector.
|
|
* @return The dot product (a * b).
|
|
*/
|
|
inline float vec3_dot(const Vec3 *a, const Vec3 *b);
|
|
|
|
/**
|
|
* @brief Computes the cross product of two 3D vectors.
|
|
*
|
|
* @param a Pointer to the first vector.
|
|
* @param b Pointer to the second vector.
|
|
* @return The cross product vector (a x b).
|
|
*/
|
|
Vec3 vec3_cross(const Vec3 *a, const Vec3 *b);
|
|
|
|
/**
|
|
* @brief Subtracts one 3D vector from another.
|
|
*
|
|
* @param a Pointer to the minuend vector.
|
|
* @param b Pointer to the subtrahend vector.
|
|
* @return The resulting vector (a - b).
|
|
*/
|
|
Vec3 vec3_sub(const Vec3 *a, const Vec3 *b);
|
|
|
|
/**
|
|
* @brief Adds two 3D vectors.
|
|
*
|
|
* @param a Pointer to the first vector.
|
|
* @param b Pointer to the second vector.
|
|
* @return The resulting vector (a + b).
|
|
*/
|
|
Vec3 vec3_add(const Vec3 *a, const Vec3 *b);
|
|
|
|
/**
|
|
* @brief Scales a 3D vector by a scalar value.
|
|
*
|
|
* @param a Pointer to the vector to scale.
|
|
* @param scalar The scalar value to multiply with the vector.
|
|
* @return The scaled vector (a * scalar).
|
|
*/
|
|
Vec3 vec3_scale(const Vec3 *a, const float scalar);
|
|
|
|
/**
|
|
* @brief Computes the dot product of two 2D vectors.
|
|
*
|
|
* @param a Pointer to the first vector.
|
|
* @param b Pointer to the second vector.
|
|
* @return The dot product (a * b).
|
|
*/
|
|
inline float vec2_dot(const Vec2 *a, const Vec2 *b);
|
|
|
|
/**
|
|
* @brief Subtracts one 2D vector from another.
|
|
*
|
|
* @param a Pointer to the minuend vector.
|
|
* @param b Pointer to the subtrahend vector.
|
|
* @return The resulting vector (a - b).
|
|
*/
|
|
Vec2 vec2_sub(const Vec2 *a, const Vec2 *b);
|
|
|
|
/**
|
|
* @brief Adds two 2D vectors.
|
|
*
|
|
* @param a Pointer to the first vector.
|
|
* @param b Pointer to the second vector.
|
|
* @return The resulting vector (a + b).
|
|
*/
|
|
Vec2 vec2_add(const Vec2 *a, const Vec2 *b);
|
|
|
|
/**
|
|
* @brief Scales a 2D vector by a scalar value.
|
|
*
|
|
* @param a Pointer to the vector to scale.
|
|
* @param scalar The scalar value to multiply with the vector.
|
|
* @return The scaled vector (a * scalar).
|
|
*/
|
|
Vec2 vec2_scale(const Vec2 *a, const float scalar);
|
|
/**
|
|
* @brief Computes the determinant of a 2x2 matrix.
|
|
*
|
|
* @param m Pointer to the matrix.
|
|
* @return The determinant of the matrix.
|
|
*/
|
|
float mat2_det(const Mat2 *m);
|
|
|
|
/**
|
|
* @brief Computes the determinant of a 3x3 matrix (row-major order).
|
|
*
|
|
* @param m Pointer to the matrix.
|
|
* @return The determinant of the matrix.
|
|
*/
|
|
float mat3_det2(const Mat3 *m);
|
|
|
|
/**
|
|
* @brief Multiplies two 2x2 matrices (row-major order).
|
|
*
|
|
* @param m1 Pointer to the first matrix.
|
|
* @param m2 Pointer to the second matrix.
|
|
* @return The resulting matrix product (m1 x m2).
|
|
*/
|
|
Mat2 mat2_mul(const Mat2 *m1, const Mat2 *m2);
|
|
|
|
/**
|
|
* @brief Multiplies two 3x3 matrices (row-major order).
|
|
*
|
|
* @param m1 Pointer to the first matrix.
|
|
* @param m2 Pointer to the second matrix.
|
|
* @return The resulting matrix product (m1 x m2).
|
|
*/
|
|
Mat3 mat3_mul(const Mat3 *m1, const Mat3 *m2);
|
|
|
|
/**
|
|
* @brief Checks if two 2x2 matrices are approximately equal.
|
|
*
|
|
* @param a Pointer to the first matrix.
|
|
* @param b Pointer to the second matrix.
|
|
* @param epsilon Tolerance for comparison.
|
|
* @return true if all elements are approximately equal within epsilon.
|
|
*/
|
|
bool mat2_approx_eq(const Mat2 *a, const Mat2 *b, float epsilon);
|
|
|
|
/**
|
|
* @brief Checks if two 3x3 matrices are approximately equal.
|
|
*
|
|
* @param a Pointer to the first matrix.
|
|
* @param b Pointer to the second matrix.
|
|
* @param epsilon Tolerance for comparison.
|
|
* @return true if all elements are approximately equal within epsilon.
|
|
*/
|
|
bool mat3_approx_eq(const Mat3 *a, const Mat3 *b, float epsilon);
|
|
|
|
/**
|
|
* @brief Checks if two 3x3 vectors are approximately equal.
|
|
*
|
|
* @param a Pointer to the first vector.
|
|
* @param b Pointer to the second vector.
|
|
* @param epsilon Tolerance for comparison.
|
|
* @return true if all elements are approximately equal within epsilon.
|
|
*/
|
|
bool vec3_approx_eq(const Vec3 *a, const Vec3 *b, float epsilon);
|
|
|
|
/**
|
|
* @brief Checks if two 2x2 vectors are approximately equal.
|
|
*
|
|
* @param a Pointer to the first vector.
|
|
* @param b Pointer to the second vector.
|
|
* @param epsilon Tolerance for comparison.
|
|
* @return true if all elements are approximately equal within epsilon.
|
|
*/
|
|
bool vec2_approx_eq(const Vec2 *a, const Vec2 *b, float epsilon);
|
|
|
|
#define MAT2_AT(m, row, col) ((m)->arr[(col) * 2 + (row)])
|
|
#define MAT3_AT(m, row, col) ((m)->arr[(col) * 3 + (row)])
|
|
|
|
/* Header end... */
|
|
|
|
float mat3_det(const Mat3 *m) {
|
|
float m00 = MAT3_AT(m, 0, 0);
|
|
float m01 = MAT3_AT(m, 0, 1);
|
|
float m02 = MAT3_AT(m, 0, 2);
|
|
|
|
float m10 = MAT3_AT(m, 1, 0);
|
|
float m11 = MAT3_AT(m, 1, 1);
|
|
float m12 = MAT3_AT(m, 1, 2);
|
|
|
|
float m20 = MAT3_AT(m, 2, 0);
|
|
float m21 = MAT3_AT(m, 2, 1);
|
|
float m22 = MAT3_AT(m, 2, 2);
|
|
|
|
return m00 * (m11 * m22 - m12 * m21) - m01 * (m10 * m22 - m12 * m20) +
|
|
m02 * (m10 * m21 - m11 * m20);
|
|
}
|
|
|
|
inline float vec3_dot(const Vec3 *a, const Vec3 *b) {
|
|
return a->x * b->x + a->y * b->y + a->z * b->z;
|
|
}
|
|
|
|
Vec3 vec3_cross(const Vec3 *a, const Vec3 *b) {
|
|
Vec3 res = {.x = a->y * b->z - a->z * b->y,
|
|
.y = a->x * b->z - a->z * b->x,
|
|
.z = a->x * b->y - a->y * b->x};
|
|
|
|
return res;
|
|
}
|
|
|
|
Vec3 vec3_sub(const Vec3 *a, const Vec3 *b) {
|
|
Vec3 res = {
|
|
.x = a->x - b->x,
|
|
.y = a->y - b->y,
|
|
.z = a->z - b->z,
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
Vec3 vec3_add(const Vec3 *a, const Vec3 *b) {
|
|
Vec3 res = {
|
|
.x = a->x + b->x,
|
|
.y = a->y + b->y,
|
|
.z = a->z + b->z,
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
Vec3 vec3_scale(const Vec3 *a, const float scalar) {
|
|
Vec3 res = {
|
|
.x = a->x * scalar,
|
|
.y = a->y * scalar,
|
|
.z = a->z * scalar,
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
float vec2_dot(const Vec2 *a, const Vec2 *b) {
|
|
return a->x * b->x + a->y * b->y;
|
|
}
|
|
|
|
Vec2 vec2_sub(const Vec2 *a, const Vec2 *b) {
|
|
Vec2 res = {
|
|
.x = a->x - b->x,
|
|
.y = a->y - b->y,
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
Vec2 vec2_add(const Vec2 *a, const Vec2 *b) {
|
|
Vec2 res = {
|
|
.x = a->x + b->x,
|
|
.y = a->y + b->y,
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
Vec2 vec2_scale(const Vec2 *a, const float scalar) {
|
|
Vec2 res = {
|
|
.x = a->x * scalar,
|
|
.y = a->y * scalar,
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
Mat2 mat2_mul(const Mat2 *m1, const Mat2 *m2) {
|
|
Mat2 m3 = {.arr = {
|
|
MAT2_AT(m1, 0, 0) * MAT2_AT(m2, 0, 0) +
|
|
MAT2_AT(m1, 0, 1) * MAT2_AT(m2, 1, 0),
|
|
MAT2_AT(m1, 1, 0) * MAT2_AT(m2, 0, 0) +
|
|
MAT2_AT(m1, 1, 1) * MAT2_AT(m2, 1, 0),
|
|
MAT2_AT(m1, 0, 0) * MAT2_AT(m2, 0, 1) +
|
|
MAT2_AT(m1, 0, 1) * MAT2_AT(m2, 1, 1),
|
|
MAT2_AT(m1, 1, 0) * MAT2_AT(m2, 0, 1) +
|
|
MAT2_AT(m1, 1, 1) * MAT2_AT(m2, 1, 1),
|
|
}};
|
|
|
|
return m3;
|
|
}
|
|
|
|
Mat3 mat3_mul(const Mat3 *m1, const Mat3 *m2) {
|
|
Mat3 m3;
|
|
|
|
for (int col = 0; col < 3; ++col) {
|
|
for (int row = 0; row < 3; ++row) {
|
|
float sum = 0.0f;
|
|
for (int k = 0; k < 3; ++k) {
|
|
sum += MAT3_AT(m1, row, k) * MAT3_AT(m2, k, col);
|
|
}
|
|
m3.arr[col * 3 + row] = sum;
|
|
}
|
|
}
|
|
|
|
return m3;
|
|
}
|
|
|
|
void mat3_print(const Mat3 *m) {
|
|
for (int row = 0; row < 3; ++row) {
|
|
printf("| ");
|
|
for (int col = 0; col < 3; ++col) {
|
|
printf("%8.3f ", MAT3_AT(m, row, col));
|
|
}
|
|
printf("|\n");
|
|
}
|
|
}
|
|
|
|
bool mat2_approx_eq(const Mat2 *a, const Mat2 *b, float epsilon) {
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (fabsf(a->arr[i] - b->arr[i]) > epsilon)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool mat3_approx_eq(const Mat3 *a, const Mat3 *b, float epsilon) {
|
|
for (int i = 0; i < 9; ++i) {
|
|
if (fabsf(a->arr[i] - b->arr[i]) > epsilon)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool vec2_approx_eq(const Vec2 *a, const Vec2 *b, float epsilon) {
|
|
return (fabsf(a->x - b->x) <= epsilon) && (fabsf(a->y - b->y) <= epsilon);
|
|
}
|
|
|
|
bool vec3_approx_eq(const Vec3 *a, const Vec3 *b, float epsilon) {
|
|
return (fabsf(a->x - b->x) <= epsilon) && (fabsf(a->y - b->y) <= epsilon) &&
|
|
(fabsf(a->z - b->z) <= epsilon);
|
|
}
|
|
|
|
/* Implem end */
|
|
|
|
int main(void) {
|
|
{
|
|
Mat3 m = {{1, 0, 0, 0, 1, 0, 0, 0, 1}};
|
|
|
|
Mat3 m3 = mat3_mul(&m, &m);
|
|
assert(mat3_approx_eq(&m3, &m, 0.01));
|
|
}
|
|
{
|
|
Mat3 m = {{1, 0, 0, 0, 1, 0, 0, 0, 1}};
|
|
float d = mat3_det(&m);
|
|
printf("Determinant: %f\n", d);
|
|
|
|
MAT3_AT(&m, 0, 0) = 2;
|
|
d = mat3_det(&m);
|
|
printf("Determinant: %f\n", d);
|
|
}
|
|
{
|
|
/* Vector tests for addition, subtraction and multiplication (scale) */
|
|
|
|
/* Vec3 */
|
|
|
|
Vec3 a3 = {2, 2, 2};
|
|
Vec3 b3 = {1, 1, 1};
|
|
Vec3 c3_sub = vec3_sub(&a3, &b3);
|
|
Vec3 c3_add = vec3_add(&a3, &b3);
|
|
Vec3 m3 = vec3_scale(&a3, 1.5);
|
|
|
|
Vec3 v3_expected_add = {3, 3, 3};
|
|
|
|
assert(vec3_approx_eq(&c3_sub, &b3, 0.01));
|
|
assert(vec3_approx_eq(&c3_add, &v3_expected_add, 0.01));
|
|
assert(vec3_approx_eq(&m3, &v3_expected_add, 0.01));
|
|
|
|
/* Vec2 */
|
|
|
|
Vec2 a2 = {2, 2};
|
|
Vec2 b2 = {1, 1};
|
|
Vec2 c2_sub = vec2_sub(&a2, &b2);
|
|
Vec2 c2_add = vec2_add(&a2, &b2);
|
|
Vec2 m2 = vec2_scale(&a2, 1.5);
|
|
|
|
Vec2 v2_expected_add = {3, 3};
|
|
|
|
assert(vec2_approx_eq(&c2_sub, &b2, 0.01));
|
|
assert(vec2_approx_eq(&c2_add, &v2_expected_add, 0.01));
|
|
assert(vec2_approx_eq(&m2, &v2_expected_add, 0.01));
|
|
}
|
|
{
|
|
Vec3 a = {10, 10, 10};
|
|
Vec3 b = {5, 5, 5};
|
|
Vec3 c = vec3_cross(&a, &b);
|
|
printf("{ Vec3: %f, %f, %f }\n", c.x, c.y, c.z);
|
|
}
|
|
{
|
|
Vec3 a = {0, 1, 0};
|
|
Vec3 b = {0, 0, 1};
|
|
Vec3 c = vec3_cross(&a, &b);
|
|
printf("{ Vec3: %f, %f, %f }\n", c.x, c.y, c.z);
|
|
}
|
|
|
|
return 0;
|
|
}
|