diff --git a/rsa.c b/rsa.c
index 89a3069..5a588eb 100644
--- a/rsa.c
+++ b/rsa.c
@@ -7,20 +7,16 @@ u64 gcd(u64 a, u64 b) { return extended_euclid(a, b, NULL, NULL); }
 
 u64 extended_euclid(u64 a, u64 b, u64 *x, u64 *y) {
     if (b == 0) {
-        if (x)
-            *x = 1;
-        if (y)
-            *y = 0;
+        if (x) *x = 1;
+        if (y) *y = 0;
         return a;
     }
 
     u64 x1, y1;
     u64 gcd = extended_euclid(b, a % b, &x1, &y1);
 
-    if (x)
-        *x = y1;
-    if (y)
-        *y = x1 - (a / b) * y1;
+    if (x) *x = y1;
+    if (y) *y = x1 - (a / b) * y1;
 
     return gcd;
 }
@@ -56,8 +52,8 @@ u64 mulmod(u64 a, u64 b, u64 m) {
         if (b & 1) {
             result = (result + a) % m;
         }
-        a = (a * 2) % m;  // Double a, keep it within the modulus
-        b >>= 1;  // Right shift b (divide by 2)
+        a = (a * 2) % m; // Double a, keep it within the modulus
+        b >>= 1;         // Right shift b (divide by 2)
     }
 
     return result;
@@ -86,20 +82,17 @@ u64 gen_prime(u64 min, u64 max) {
 }
 
 bool is_prime(u64 n) {
-    if (n < 2)
-        return false;
+    if (n < 2) return false;
 
     for (int i = 2; i < n / 2 + 1; i++) {
-        if (n % i == 0)
-            return false;
+        if (n % i == 0) return false;
     }
 
     return true;
 }
 
 bool miller_rabin(u64 n, u64 k) {
-    if (n < 2)
-        return false;
+    if (n < 2) return false;
 
     u64 d = n - 1;
     u64 s = 0;
@@ -113,17 +106,14 @@ bool miller_rabin(u64 n, u64 k) {
         u64 a = prand_range(2, n - 2);
         u64 x = modexp(a, d, n);
 
-        if (x == 1 || x == n - 1)
-            continue;
+        if (x == 1 || x == n - 1) continue;
 
         for (u64 r = 1; r < s; r++) {
             x = modexp(x, 2, n);
-            if (x == n - 1)
-                break;
+            if (x == n - 1) break;
         }
 
-        if (x != n - 1)
-            return false; // Not prime
+        if (x != n - 1) return false; // Not prime
     }
 
     return true; // Likely prime
@@ -134,8 +124,7 @@ u64 mod_inverse(u64 a, u64 m) {
     u64 y = 0, x = 1;
 
     // Modular inverse does not exist when m is 1
-    if (m == 1)
-        return 0;
+    if (m == 1) return 0;
 
     while (a > 1) {
         // q is quotient
@@ -153,8 +142,7 @@ u64 mod_inverse(u64 a, u64 m) {
     }
 
     // Make x positive
-    if (x < 0)
-        x += m0;
+    if (x < 0) x += m0;
 
     return x;
 }