Delete sample code

This commit is contained in:
Imbus 2025-06-18 00:49:30 +02:00
parent 88def95e47
commit aaf7652391
8 changed files with 4 additions and 522 deletions

View file

@ -11,7 +11,7 @@ CC := $(TOOL_PREFIX)-gcc
OBJDUMP := $(TOOL_PREFIX)-objdump
OBJCOPY := $(TOOL_PREFIX)-objcopy
SRC := ch32fun.c main.c rsa.c rand.c
SRC := ch32fun.c main.c
CFLAGS = -g \
-Os \

View file

@ -1,25 +0,0 @@
#pragma once
#include <stdint.h>
#include <stdio.h>
#define ASSERT(expr) \
do { \
if (!(expr)) { \
printf("ASSERTION FAILED: %s at %s:%d\n", #expr, __FILE__, \
__LINE__); \
while (1); \
} \
} while (0)
#define ASSERT_EQ(expr, expected) \
do { \
uint64_t result = (expr); \
if (result != (expected)) { \
printf("ASSERTION FAILED: %s at %s:%d\n", #expr, __FILE__, \
__LINE__); \
printf("Expected: %lu, Got: %lu\n", (unsigned long)(expected), \
(unsigned long)result); \
while (1); \
} \
} while (0)

View file

@ -5,14 +5,4 @@
#define CH32V003 1
#define NULL ((void *)0)
typedef int8_t i8;
typedef uint8_t u8;
typedef int16_t i16;
typedef uint32_t u32;
typedef int32_t i32;
typedef int64_t i64;
typedef uint64_t u64;
#endif

113
main.c
View file

@ -1,122 +1,15 @@
#include "assert.h"
#include <ch32fun.h>
#include <rand.h>
#include <rsa.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define LED_PIN PD6
#define RANDOM
#define W 16
void exit_blink() {
for (int i = 0; i < 4; i++) {
funDigitalWrite(LED_PIN, FUN_HIGH);
Delay_Ms(50);
funDigitalWrite(LED_PIN, FUN_LOW);
Delay_Ms(50);
}
}
void enter_blink() {
for (int i = 0; i < 2; i++) {
funDigitalWrite(LED_PIN, FUN_HIGH);
Delay_Ms(200);
funDigitalWrite(LED_PIN, FUN_LOW);
Delay_Ms(200);
}
}
void test_mulmod() {
ASSERT_EQ(mulmod(3, 2, 4), 2);
ASSERT_EQ((3 * 2) % 4, 2);
ASSERT_EQ(mulmod(31, 3, 8), 5);
ASSERT_EQ(mulmod((u64)1 << 63, 2, 1000000007ULL), 582344008);
}
void test_modexp() {
ASSERT_EQ(modexp(3, 2, 4), 1);
ASSERT_EQ((3 ^ 2) % 4, 1);
ASSERT_EQ(modexp(31, 3, 8), 7);
ASSERT_EQ(modexp((u64)1 << 63, 2, 1000000007ULL), 319908071);
}
void debug_string(char *str) {
printf("Got string: %s\n", str);
for (int i = 0; i < strlen(str); i++) {
printf("decoded[%d] = '%c' (ASCII: %d)\n", i, str[i],
str[i]); // Print decoded chars and ASCII values
}
}
int main() {
SystemInit();
sprand(0);
funGpioInitAll();
funPinMode(LED_PIN, GPIO_Speed_10MHz | GPIO_CNF_OUT_PP);
enter_blink();
funDigitalWrite(LED_PIN, 1);
Delay_Ms(100);
funDigitalWrite(LED_PIN, 0);
test_mulmod();
test_modexp();
const u64 p = gen_prime(1 << (W - 1), 1 << W);
printf("P: %u\n", (u32)p);
u64 qprev = p;
while (p == qprev) qprev = gen_prime(1 << (W - 1), 1 << W);
const u64 q = qprev;
printf("Q: %u\n", (u32)q);
ASSERT(gcd(p - 1, PUBEXP) == 1);
ASSERT(gcd(q - 1, PUBEXP) == 1);
u64 n = p * q;
printf("N: %u\n", (u32)n);
u64 phi_n = (p - 1) * (q - 1);
printf("Phi_N: %u\n", (u32)phi_n);
u64 d = mod_inverse(PUBEXP, phi_n);
printf("D: %u\n", (u32)d);
if (d == 0 || d == 1) {
printf("Modular inverse not found...");
}
ASSERT_EQ(mulmod(PUBEXP, d, phi_n), 1);
char msg[] = "Hello";
u64 coded[sizeof(msg)] = {0};
char decoded[sizeof(msg)] = {0};
// Encode the message
for (int i = 0; i < strlen(msg); i++) {
coded[i] = modexp((u64)msg[i], PUBEXP, n);
}
// Decode the message
for (int i = 0; i < strlen(msg); i++) {
u64 dec = modexp(coded[i], d, n);
decoded[i] = dec & 0xFF;
}
{
printf("Message: %s\n", msg);
printf("Decoded: %s\n", decoded);
for (int i = 0; i < strlen(msg); i++) {
printf("coded[%d] = 0x%016lx\n", i, (unsigned long)coded[i]);
}
debug_string(decoded);
}
// Exit and hang forever
exit_blink();
while (1);
}

80
rand.c
View file

@ -1,80 +0,0 @@
#include "rand.h"
#include "ch32fun.h"
#include "ch32v003hw.h"
#include <stdint.h>
#define BUILD_SEED \
((uint64_t)(__TIME__[0]) * (uint64_t)(__TIME__[1]) * \
(uint64_t)(__TIME__[3]) * (uint64_t)(__TIME__[4]) * \
(uint64_t)(__TIME__[6]) * (uint64_t)(__TIME__[7]))
#define FLASH_SEED_ADDR ((uintptr_t *)0x08003700) // PRNG state storage
#define PRNG_SAVE_INTERVAL 50 // Save every 1000 calls to prand()
static uint64_t seed = BUILD_SEED;
// Initialize this to something close to interval
static int prand_counter = PRNG_SAVE_INTERVAL - 10;
uint64_t prand() {
seed = seed * 6364136223846793005ULL + 1;
if (++prand_counter >= PRNG_SAVE_INTERVAL) {
rand_save_to_flash();
prand_counter = 0;
}
return seed;
}
uint64_t prand_range(uint64_t min, uint64_t max) {
return min + (prand() % (max - min + 1));
}
void sprand(uint64_t s) {
if (s) {
seed = s;
} else {
rand_reseed();
}
}
void rand_reseed() {
uint64_t stored_seed = *(volatile uint64_t *)FLASH_SEED_ADDR;
if (stored_seed == 0 || stored_seed == 0xFFFFFFFFFFFFFFFFULL) {
seed = BUILD_SEED;
} else {
seed = stored_seed;
}
}
// See:
// https://github.com/cnlohr/ch32v003fun/blob/2ac62072272f2ccd2122e688a9e0566de3976a94/examples/flashtest/flashtest.c
void rand_save_to_flash() {
FLASH->KEYR = FLASH_KEY1; // Unlock flash
FLASH->KEYR = FLASH_KEY2;
FLASH->MODEKEYR = FLASH_KEY1; // Unlock programming mode
FLASH->MODEKEYR = FLASH_KEY2;
// Erase the flash page
FLASH->CTLR = CR_PAGE_ER;
FLASH->ADDR = (intptr_t)FLASH_SEED_ADDR;
FLASH->CTLR = CR_STRT_Set | CR_PAGE_ER;
while (FLASH->STATR & FLASH_STATR_BSY); // Wait for erase
// Write new seed
FLASH->CTLR = CR_PAGE_PG;
FLASH->CTLR = CR_BUF_RST | CR_PAGE_PG;
FLASH->ADDR = (intptr_t)FLASH_SEED_ADDR;
((uint32_t *)FLASH_SEED_ADDR)[0] = (uint32_t)seed;
((uint32_t *)FLASH_SEED_ADDR)[1] = (uint32_t)(seed >> 32);
FLASH->CTLR = CR_PAGE_PG | FLASH_CTLR_BUF_LOAD;
while (FLASH->STATR & FLASH_STATR_BSY); // Wait for completion
FLASH->CTLR = CR_PAGE_PG | CR_STRT_Set; // Commit write
while (FLASH->STATR & FLASH_STATR_BSY); // Wait for completion
}

49
rand.h
View file

@ -1,49 +0,0 @@
#pragma once
#include <stdint.h>
/**
* @brief Sets the seed for the PRNG.
*
* @param s The specific seed value or zero. If zero is passed, it will call
* rand_reseed().
*/
void sprand(uint64_t s);
/**
* @brief Generates a pseudo-random 64-bit number.
*
* Saves PRNG state to flash periodically.
*
* Uses a simple Linear Congruential Generator (LCG) to produce
* a sequence of pseudo-random numbers.
*
* @return A pseudo-random 64-bit unsigned integer.
*/
uint64_t prand();
/**
* @brief Generates a random number within a specified range.
*
* Produces a random number in the inclusive range [min, max].
* Ensures uniform distribution by applying a modulo operation.
*
* @param min The lower bound of the range (inclusive).
* @param max The upper bound of the range (inclusive).
* @return A random number between min and max.
*/
uint64_t prand_range(uint64_t min, uint64_t max);
/**
* @brief Saves the current PRNG seed to flash memory.
*
* This function erases the designated flash page and writes the current seed
* to ensure the PRNG state persists across resets.
*/
void rand_save_to_flash();
/**
* @brief Re-seeds the PRNG seed state from either flash or BUILD_SEED.
*
* This function will not write to flash.
*/
void rand_reseed();

148
rsa.c
View file

@ -1,148 +0,0 @@
#include "rsa.h"
#include "funconfig.h"
#include "rand.h"
#include <stdbool.h>
u64 gcd(u64 a, u64 b) { return extended_euclid(a, b, NULL, NULL); }
u64 extended_euclid(u64 a, u64 b, u64 *x, u64 *y) {
if (b == 0) {
if (x) *x = 1;
if (y) *y = 0;
return a;
}
u64 x1, y1;
u64 gcd = extended_euclid(b, a % b, &x1, &y1);
if (x) *x = y1;
if (y) *y = x1 - (a / b) * y1;
return gcd;
}
u64 totient(u64 n) {
int result = n;
// Check for prime factors
for (int p = 2; p * p <= n; p++) {
if (n % p == 0) {
// If p is a prime factor of n, remove all occurrences of p
while (n % p == 0) {
n /= p;
}
result -= result / p;
}
}
// If n is still greater than 1, then it's a prime factor itself
if (n > 1) {
result -= result / n;
}
return result;
}
u64 mulmod(u64 a, u64 b, u64 m) {
u64 result = 0;
a %= m;
// Perform the multiplication bit by bit (binary multiplication)
while (b > 0) {
if (b & 1) {
result = (result + a) % m;
}
a = (a * 2) % m; // Double a, keep it within the modulus
b >>= 1; // Right shift b (divide by 2)
}
return result;
}
u64 modexp(u64 a, u64 b, u64 m) {
u64 result = 1;
a %= m;
while (b > 0) {
if (b & 1) {
result = mulmod(result, a, m);
}
b >>= 1;
a = mulmod(a, a, m);
}
return result;
}
u64 gen_prime(u64 min, u64 max) {
u64 cand = 0;
while (!miller_rabin(cand, 10)) cand = prand_range(min, max);
return cand;
}
bool is_prime(u64 n) {
if (n < 2) return false;
for (int i = 2; i < n / 2 + 1; i++) {
if (n % i == 0) return false;
}
return true;
}
bool miller_rabin(u64 n, u64 k) {
if (n < 2) return false;
u64 d = n - 1;
u64 s = 0;
while (d % 2 == 0) {
d /= 2;
s++;
}
for (u64 i = 0; i < k; i++) {
u64 a = prand_range(2, n - 2);
u64 x = modexp(a, d, n);
if (x == 1 || x == n - 1) continue;
for (u64 r = 1; r < s; r++) {
x = modexp(x, 2, n);
if (x == n - 1) break;
}
if (x != n - 1) return false; // Not prime
}
return true; // Likely prime
}
u64 mod_inverse(u64 a, u64 m) {
u64 m0 = m;
u64 y = 0, x = 1;
// Modular inverse does not exist when m is 1
if (m == 1) return 0;
while (a > 1) {
// q is quotient
u64 q = a / m;
u64 t = m;
// m is remainder now
m = a % m;
a = t;
t = y;
// Update x and y
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0) x += m0;
return x;
}

99
rsa.h
View file

@ -1,99 +0,0 @@
#pragma once
#include "funconfig.h"
#include <stdbool.h>
#include <stdint.h>
// Common public exponent, in Fermat prime form
#define PUBEXP ((1 << 16) | 0x1)
/**
* @brief Calculates greatest common divider of two integers using the euclidean
* algorithm
*
* @param a First number
* @param b Second number
* @return The greatest common divider
*/
u64 gcd(u64 a, u64 b);
/**
* @brief Computes Euler's Totient function φ(n), which counts the number of
* integers from 1 to n that are coprime to n.
*
* @param n The input number.
* @return The number of integers from 1 to n that are coprime to n.
*/
u64 totient(u64 n);
/**
* @brief Computes (a * b) % m safely without overflow.
*
* Uses repeated addition and bit shifting to handle large values,
* ensuring correctness even on 32-bit microcontrollers.
*
* @param a The first operand.
* @param b The second operand.
* @param m The modulus.
* @return (a * b) % m computed safely.
*/
u64 mulmod(u64 a, u64 b, u64 m);
/**
* @brief Modular exponentiation (a^b) mod m
*
* @param a The base
* @param b The exponent
* @param m The modulus
*/
u64 modexp(u64 a, u64 b, u64 m);
/**
* @brief Computes the modular inverse of a modulo m.
*
* @param a The integer whose modular inverse is to be found.
* @param m The modulus.
* @return The modular inverse of a modulo m, or -1 if no inverse exists.
*/
u64 mod_inverse(u64 a, u64 m);
/**
* @brief Generates a random prime number within the given range.
*
* @param min The lower bound (inclusive).
* @param max The upper bound (inclusive).
* @return A prime number in the range [min, max].
*/
u64 gen_prime(u64 min, u64 max);
/**
* @brief Checks if a number is prime.
*
* @param n The number to check.
* @return true if n is prime, false otherwise.
*/
bool is_prime(u64 n);
/**
* @brief Performs the Miller-Rabin primality test to check if a number is
* probably prime.
*
* @param n The number to test for primality.
* @param k The number of rounds of testing to perform.
* @return true if n is probably prime, false if n is composite.
*/
bool miller_rabin(u64 n, u64 k);
/**
* @brief Computes the greatest common divisor (GCD) of two integers a and b
* using the Extended Euclidean Algorithm. Also finds coefficients x and y such
* that ax + by = gcd(a, b).
*
* @param a The first integer.
* @param b The second integer.
* @param x Pointer to an integer to store the coefficient x in the equation ax
* + by = gcd(a, b).
* @param y Pointer to an integer to store the coefficient y in the equation ax
* + by = gcd(a, b).
* @return The greatest common divisor (gcd) of a and b.
*/
u64 extended_euclid(u64 a, u64 b, u64 *x, u64 *y);