Safe mulmod, used in modexp and friends

This commit is contained in:
Imbus 2025-02-13 00:35:52 +01:00
parent 50e640ea84
commit b16c3b098a
2 changed files with 53 additions and 27 deletions

57
rsa.c
View file

@ -3,18 +3,17 @@
#include <stdbool.h>
#include <stdint.h>
#define NULL ((void *)0)
uint64_t gcd(uint64_t a, uint64_t b) {
while (b != 0) {
uint64_t temp = b;
b = a % b;
a = temp;
}
return a;
return extended_euclid(a, b, NULL, NULL);
}
int extended_euclid(int a, int b, int *x, int *y) {
if (b == 0) {
if (x)
*x = 1;
if (y)
*y = 0;
return a;
}
@ -22,8 +21,9 @@ int extended_euclid(int a, int b, int *x, int *y) {
int x1, y1;
int gcd = extended_euclid(b, a % b, &x1, &y1);
// Update x and y using results from recursive call
if (x)
*x = y1;
if (y)
*y = x1 - (a / b) * y1;
return gcd;
@ -51,18 +51,31 @@ int totient(int n) {
return result;
}
uint64_t modexp(uint64_t a, uint64_t b, uint64_t m) {
uint64_t result = 1;
a = a % m; // In case a is greater than m
uint64_t mulmod(uint64_t a, uint64_t b, uint64_t m) {
uint64_t result = 0;
a %= m;
while (b > 0) {
// If b is odd, multiply a with result
if (b % 2 == 1)
result = (result * a) % m;
if (b & 1) {
result = (result + a) % m; // Avoid overflow
}
a = (a * 2) % m; // Double a, keep within mod
b >>= 1;
}
// b must be even now
b = b >> 1; // b = b // 2
a = (a * a) % m; // Change a to a^2
return result;
}
uint64_t modexp(uint64_t a, uint64_t b, uint64_t m) {
uint64_t result = 1;
a %= m;
while (b > 0) {
if (b & 1) {
result = mulmod(result, a, m);
}
b >>= 1;
a = mulmod(a, a, m);
}
return result;
@ -70,7 +83,7 @@ uint64_t modexp(uint64_t a, uint64_t b, uint64_t m) {
uint64_t gen_prime(uint64_t min, uint64_t max) {
uint64_t cand = 0;
while (!miller_rabin(cand, 5)) cand = prand_range(min, max);
while (!miller_rabin(cand, 10)) cand = prand_range(min, max);
return cand;
}
@ -119,17 +132,17 @@ bool miller_rabin(uint64_t n, uint64_t k) {
return true; // Likely prime
}
int mod_inverse(int a, int m) {
int m0 = m;
int y = 0, x = 1;
uint64_t mod_inverse(uint64_t a, uint64_t m) {
uint64_t m0 = m;
uint64_t y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
// q is quotient
int q = a / m;
int t = m;
uint64_t q = a / m;
uint64_t t = m;
// m is remainder now
m = a % m;

15
rsa.h
View file

@ -21,6 +21,19 @@ uint64_t gcd(uint64_t a, uint64_t b);
*/
int totient(int n);
/**
* @brief Computes (a * b) % m safely without overflow.
*
* Uses repeated addition and bit shifting to handle large values,
* ensuring correctness even on 32-bit microcontrollers.
*
* @param a The first operand.
* @param b The second operand.
* @param m The modulus.
* @return (a * b) % m computed safely.
*/
uint64_t mulmod(uint64_t a, uint64_t b, uint64_t m);
/**
* @brief Modular exponentiation (a^b) mod m
*
@ -37,7 +50,7 @@ uint64_t modexp(uint64_t a, uint64_t b, uint64_t m);
* @param m The modulus.
* @return The modular inverse of a modulo m, or -1 if no inverse exists.
*/
int mod_inverse(int a, int m);
uint64_t mod_inverse(uint64_t a, uint64_t m);
/**
* @brief Generates a random prime number within the given range.