diff --git a/.clang-format b/.clang-format index ec06966..41e7b1a 100644 --- a/.clang-format +++ b/.clang-format @@ -6,4 +6,3 @@ ColumnLimit: 80 # Wrap lines after 80 characters AllowShortLoopsOnASingleLine: true AlwaysBreakTemplateDeclarations: true BreakConstructorInitializers: BeforeComma -AllowShortIfStatementsOnASingleLine: true diff --git a/assert.h b/assert.h index e2fc017..e56b318 100644 --- a/assert.h +++ b/assert.h @@ -3,7 +3,7 @@ #include #include -#define ASSERT(expr) \ +#define ASSERT(expr) \ do { \ if (!(expr)) { \ printf("ASSERTION FAILED: %s at %s:%d\n", #expr, __FILE__, \ diff --git a/rsa.c b/rsa.c index 5a588eb..89a3069 100644 --- a/rsa.c +++ b/rsa.c @@ -7,16 +7,20 @@ u64 gcd(u64 a, u64 b) { return extended_euclid(a, b, NULL, NULL); } u64 extended_euclid(u64 a, u64 b, u64 *x, u64 *y) { if (b == 0) { - if (x) *x = 1; - if (y) *y = 0; + if (x) + *x = 1; + if (y) + *y = 0; return a; } u64 x1, y1; u64 gcd = extended_euclid(b, a % b, &x1, &y1); - if (x) *x = y1; - if (y) *y = x1 - (a / b) * y1; + if (x) + *x = y1; + if (y) + *y = x1 - (a / b) * y1; return gcd; } @@ -52,8 +56,8 @@ u64 mulmod(u64 a, u64 b, u64 m) { if (b & 1) { result = (result + a) % m; } - a = (a * 2) % m; // Double a, keep it within the modulus - b >>= 1; // Right shift b (divide by 2) + a = (a * 2) % m; // Double a, keep it within the modulus + b >>= 1; // Right shift b (divide by 2) } return result; @@ -82,17 +86,20 @@ u64 gen_prime(u64 min, u64 max) { } bool is_prime(u64 n) { - if (n < 2) return false; + if (n < 2) + return false; for (int i = 2; i < n / 2 + 1; i++) { - if (n % i == 0) return false; + if (n % i == 0) + return false; } return true; } bool miller_rabin(u64 n, u64 k) { - if (n < 2) return false; + if (n < 2) + return false; u64 d = n - 1; u64 s = 0; @@ -106,14 +113,17 @@ bool miller_rabin(u64 n, u64 k) { u64 a = prand_range(2, n - 2); u64 x = modexp(a, d, n); - if (x == 1 || x == n - 1) continue; + if (x == 1 || x == n - 1) + continue; for (u64 r = 1; r < s; r++) { x = modexp(x, 2, n); - if (x == n - 1) break; + if (x == n - 1) + break; } - if (x != n - 1) return false; // Not prime + if (x != n - 1) + return false; // Not prime } return true; // Likely prime @@ -124,7 +134,8 @@ u64 mod_inverse(u64 a, u64 m) { u64 y = 0, x = 1; // Modular inverse does not exist when m is 1 - if (m == 1) return 0; + if (m == 1) + return 0; while (a > 1) { // q is quotient @@ -142,7 +153,8 @@ u64 mod_inverse(u64 a, u64 m) { } // Make x positive - if (x < 0) x += m0; + if (x < 0) + x += m0; return x; }