ch32hack/rsa.h

96 lines
2.6 KiB
C

#pragma once
#include "funconfig.h"
#include <stdbool.h>
#include <stdint.h>
/**
* @brief Calculates greatest common divider of two integers using the euclidean
* algorithm
*
* @param a First number
* @param b Second number
* @return The greatest common divider
*/
u64 gcd(u64 a, u64 b);
/**
* @brief Computes Euler's Totient function φ(n), which counts the number of
* integers from 1 to n that are coprime to n.
*
* @param n The input number.
* @return The number of integers from 1 to n that are coprime to n.
*/
u64 totient(u64 n);
/**
* @brief Computes (a * b) % m safely without overflow.
*
* Uses repeated addition and bit shifting to handle large values,
* ensuring correctness even on 32-bit microcontrollers.
*
* @param a The first operand.
* @param b The second operand.
* @param m The modulus.
* @return (a * b) % m computed safely.
*/
u64 mulmod(u64 a, u64 b, u64 m);
/**
* @brief Modular exponentiation (a^b) mod m
*
* @param a The base
* @param b The exponent
* @param m The modulus
*/
u64 modexp(u64 a, u64 b, u64 m);
/**
* @brief Computes the modular inverse of a modulo m.
*
* @param a The integer whose modular inverse is to be found.
* @param m The modulus.
* @return The modular inverse of a modulo m, or -1 if no inverse exists.
*/
u64 mod_inverse(u64 a, u64 m);
/**
* @brief Generates a random prime number within the given range.
*
* @param min The lower bound (inclusive).
* @param max The upper bound (inclusive).
* @return A prime number in the range [min, max].
*/
u64 gen_prime(u64 min, u64 max);
/**
* @brief Checks if a number is prime.
*
* @param n The number to check.
* @return true if n is prime, false otherwise.
*/
bool is_prime(u64 n);
/**
* @brief Performs the Miller-Rabin primality test to check if a number is
* probably prime.
*
* @param n The number to test for primality.
* @param k The number of rounds of testing to perform.
* @return true if n is probably prime, false if n is composite.
*/
bool miller_rabin(u64 n, u64 k);
/**
* @brief Computes the greatest common divisor (GCD) of two integers a and b
* using the Extended Euclidean Algorithm. Also finds coefficients x and y such
* that ax + by = gcd(a, b).
*
* @param a The first integer.
* @param b The second integer.
* @param x Pointer to an integer to store the coefficient x in the equation ax
* + by = gcd(a, b).
* @param y Pointer to an integer to store the coefficient y in the equation ax
* + by = gcd(a, b).
* @return The greatest common divisor (gcd) of a and b.
*/
u64 extended_euclid(u64 a, u64 b, u64 *x, u64 *y);