ch32hack/rsa.c
2025-02-12 23:04:32 +01:00

149 lines
2.7 KiB
C

#include "rsa.h"
#include "rand.h"
#include <stdbool.h>
#include <stdint.h>
uint64_t gcd(uint64_t a, uint64_t b) {
while (b != 0) {
uint64_t temp = b;
b = a % b;
a = temp;
}
return a;
}
int extended_euclid(int a, int b, int *x, int *y) {
if (b == 0) {
*x = 1;
*y = 0;
return a;
}
int x1, y1;
int gcd = extended_euclid(b, a % b, &x1, &y1);
// Update x and y using results from recursive call
*x = y1;
*y = x1 - (a / b) * y1;
return gcd;
}
int totient(int n) {
int result = n;
// Check for prime factors
for (int p = 2; p * p <= n; p++) {
if (n % p == 0) {
// If p is a prime factor of n, remove all occurrences of p
while (n % p == 0) {
n /= p;
}
result -= result / p;
}
}
// If n is still greater than 1, then it's a prime factor itself
if (n > 1) {
result -= result / n;
}
return result;
}
uint64_t modexp(uint64_t a, uint64_t b, uint64_t m) {
uint64_t result = 1;
a = a % m; // In case a is greater than m
while (b > 0) {
// If b is odd, multiply a with result
if (b % 2 == 1)
result = (result * a) % m;
// b must be even now
b = b >> 1; // b = b // 2
a = (a * a) % m; // Change a to a^2
}
return result;
}
uint64_t gen_prime(uint64_t min, uint64_t max) {
uint64_t cand = 0;
while (!miller_rabin(cand, 5)) cand = prand_range(min, max);
return cand;
}
bool is_prime(int n) {
if (n < 2)
return false;
for (int i = 2; i < n / 2 + 1; i++) {
if (n % i == 0)
return false;
}
return true;
}
bool miller_rabin(uint64_t n, uint64_t k) {
if (n < 2)
return false;
uint64_t d = n - 1;
uint64_t s = 0;
while (d % 2 == 0) {
d /= 2;
s++;
}
for (uint64_t i = 0; i < k; i++) {
uint64_t a = prand_range(2, n - 2);
uint64_t x = modexp(a, d, n);
if (x == 1 || x == n - 1)
continue;
for (uint64_t r = 1; r < s; r++) {
x = modexp(x, 2, n);
if (x == n - 1)
break;
}
if (x != n - 1)
return false; // Not prime
}
return true; // Likely prime
}
int mod_inverse(int a, int m) {
int m0 = m;
int y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
// q is quotient
int q = a / m;
int t = m;
// m is remainder now
m = a % m;
a = t;
t = y;
// Update x and y
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0)
x += m0;
return x;
}