ch32hack/rsa.c

158 lines
2.7 KiB
C

#include "rsa.h"
#include "funconfig.h"
#include "rand.h"
#include <stdbool.h>
u64 gcd(u64 a, u64 b) { return extended_euclid(a, b, NULL, NULL); }
u64 extended_euclid(u64 a, u64 b, u64 *x, u64 *y) {
if (b == 0) {
if (x)
*x = 1;
if (y)
*y = 0;
return a;
}
u64 x1, y1;
u64 gcd = extended_euclid(b, a % b, &x1, &y1);
if (x)
*x = y1;
if (y)
*y = x1 - (a / b) * y1;
return gcd;
}
u64 totient(u64 n) {
int result = n;
// Check for prime factors
for (int p = 2; p * p <= n; p++) {
if (n % p == 0) {
// If p is a prime factor of n, remove all occurrences of p
while (n % p == 0) {
n /= p;
}
result -= result / p;
}
}
// If n is still greater than 1, then it's a prime factor itself
if (n > 1) {
result -= result / n;
}
return result;
}
u64 mulmod(u64 a, u64 b, u64 m) {
u64 result = 0;
a %= m;
while (b > 0) {
if (b & 1) {
result = (result + a) % m;
}
a = (a * 2) % m; // Double a, keep within mod
b >>= 1;
}
return result;
}
u64 modexp(u64 a, u64 b, u64 m) {
u64 result = 1;
a %= m;
while (b > 0) {
if (b & 1) {
result = mulmod(result, a, m);
}
b >>= 1;
a = mulmod(a, a, m);
}
return result;
}
u64 gen_prime(u64 min, u64 max) {
u64 cand = 0;
while (!miller_rabin(cand, 10)) cand = prand_range(min, max);
return cand;
}
bool is_prime(u64 n) {
if (n < 2)
return false;
for (int i = 2; i < n / 2 + 1; i++) {
if (n % i == 0)
return false;
}
return true;
}
bool miller_rabin(u64 n, u64 k) {
if (n < 2)
return false;
u64 d = n - 1;
u64 s = 0;
while (d % 2 == 0) {
d /= 2;
s++;
}
for (u64 i = 0; i < k; i++) {
u64 a = prand_range(2, n - 2);
u64 x = modexp(a, d, n);
if (x == 1 || x == n - 1)
continue;
for (u64 r = 1; r < s; r++) {
x = modexp(x, 2, n);
if (x == n - 1)
break;
}
if (x != n - 1)
return false; // Not prime
}
return true; // Likely prime
}
u64 mod_inverse(u64 a, u64 m) {
u64 m0 = m;
u64 y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
// q is quotient
u64 q = a / m;
u64 t = m;
// m is remainder now
m = a % m;
a = t;
t = y;
// Update x and y
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0)
x += m0;
return x;
}