Compare commits

..

No commits in common. "0d8a1af1ffb6eb7a7d49849df58ff5945ca52899" and "23a41dfbdd4b28e8601f19a5d941e0167acc4ead" have entirely different histories.

14 changed files with 181 additions and 164 deletions

View file

@ -21,7 +21,6 @@ CFLAGS += -ffreestanding
CFLAGS += -fno-common
CFLAGS += -nostdlib
CFLAGS += -mno-relax
CFLAGS += -std=gnu99
CFLAGS += -fno-stack-protector # Prevents code that needs libc / runtime support
CFLAGS += -MD # Generate header dependency files (.d)
@ -45,8 +44,7 @@ KERNEL_OBJ := \
kern/libkern/panic.o \
kern/libkern/memory.o \
kern/libkern/spinlock.o \
kern/libkern/mini-printf.o \
kern/libkern/stdio.o
kern/libkern/mini-printf.o
kern/kernel.elf: $(KERNEL_OBJ)
@echo LD $@

View file

@ -44,7 +44,7 @@ void kfree(void *pa) {
// Assert that page is a ligned to a page boundary and that its correctly
// sized
if (((u64)pa % PGSIZE) != 0 || (char *)pa < kernel_end || (u64)pa >= PHYSTOP)
PANIC("kfree");
panic("kfree");
// Fill with junk to catch dangling refs.
memset(pa, 1, PGSIZE);

View file

@ -1,18 +1,8 @@
#include "stdbool.h"
#include <mini-printf.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <uart.h>
volatile int panicked;
volatile int panicked = false;
__attribute__((visibility("hidden")))
void __panic(const char *restrict fmt, ...) {
va_list ap;
va_start(ap, fmt);
(void)mini_vpprintf(stdout_puts, NULL, fmt, ap);
va_end(ap);
panicked = true;
while (true) asm volatile("wfi");
void panic(char *s) {
panicked = 1;
uart_puts(s);
while (1);
}

View file

@ -1,8 +1,6 @@
#ifndef KERNEL_PANIC_H
#define KERNEL_PANIC_H
#define PANIC(fmt, ...) __panic("[%s:%d %s] \n" fmt, __FILE__, __LINE__, __func__)
void __panic(const char *restrict fmt, ...);
void panic(char *s);
#endif

View file

@ -1,6 +1,6 @@
#include <proc.h>
Cpu cpus[NCPU];
struct Cpu cpus[NCPU];
/**
* Must be called with interrupts disabled, to prevent race with process being
@ -14,8 +14,8 @@ int cpuid() {
/**
* Return this CPU's cpu struct. Interrupts must be disabled.
*/
Cpu *mycpu(void) {
int id = cpuid();
Cpu *c = &cpus[id];
struct Cpu *mycpu(void) {
int id = cpuid();
struct Cpu *c = &cpus[id];
return c;
}

View file

@ -3,6 +3,8 @@
* (Not mutexes as these are spinning locks).
*/
// #include <lib/stdio.h>
#include "string.h"
#include <panic.h>
#include <proc.h>
#include <riscv.h>
@ -39,42 +41,86 @@
* On RISC-V, this emits a fence instruction.
*/
/*
* These are from the original xv6 implementation, with only slight modifications on their return type.
*
* push_off/pop_off are like intr_off()/intr_on() except that they are matched:
* it takes two pop_off()s to undo two push_off()s. Also, if interrupts
* are initially off, then push_off, pop_off leaves them off.
*/
uint32_t push_off(void) {
int old = intr_get();
Cpu *cpu = mycpu();
intr_off();
if (cpu->noff == 0)
cpu->intena = old;
cpu->noff += 1;
return cpu->noff;
/** Initialize Spinlock */
void initlock(struct Spinlock *lk, char *name) {
lk->name = name;
lk->locked = 0;
lk->cpu = 0;
}
uint32_t pop_off(void) {
Cpu *cpu = mycpu();
/**
* Acquire the lock.
* Loops (spins) until the lock is acquired.
* Panics if the lock is already held by this cpu.
*/
void acquire(struct Spinlock *lk) {
push_off(); // disable interrupts to avoid deadlock.
if (holding(lk)) // If the lock is already held, panic.
panic("acquire");
// Spin until aquired. See file header for details
while (__sync_lock_test_and_set(&lk->locked, 1) != 0);
__sync_synchronize(); // No loads/stores after this point
// Record info about lock acquisition for holding() and debugging.
lk->cpu = mycpu();
}
/**
* Release the lock.
* Panics if the lock is not held.
*/
void release(struct Spinlock *lk) {
if (!holding(lk)) // If the lock is not held, panic.
panic("release");
lk->cpu = 0; // 0 means unheld
__sync_synchronize(); // No loads/stores after this point
__sync_lock_release(&lk->locked); // Essentially lk->locked = 0
pop_off();
}
// Check whether this cpu is holding the lock.
// Interrupts must be off.
int holding(struct Spinlock *lk) {
int r;
r = (lk->locked && lk->cpu == mycpu());
return r;
}
// push_off/pop_off are like intr_off()/intr_on() except that they are matched:
// it takes two pop_off()s to undo two push_off()s. Also, if interrupts
// are initially off, then push_off, pop_off leaves them off.
void push_off(void) {
int old = intr_get();
intr_off();
if (mycpu()->noff == 0)
mycpu()->intena = old;
mycpu()->noff += 1;
}
void pop_off(void) {
struct Cpu *c = mycpu();
if (intr_get())
PANIC("pop_off - interruptible");
if (cpu->noff < 1)
PANIC("pop_off");
cpu->noff -= 1;
if (cpu->noff == 0 && cpu->intena)
panic("pop_off - interruptible");
if (c->noff < 1) {
{
// TODO: Remove this block when fixed
char amt[100];
itoa(c->noff, amt, 10);
uart_puts(amt);
}
panic("pop_off");
}
c->noff -= 1;
if (c->noff == 0 && c->intena)
intr_on();
return cpu->noff;
}
void spinlock_init(spinlock_t *l) {
@ -89,47 +135,34 @@ __attribute__((warn_unused_result)) bool spin_trylock(spinlock_t *l) {
}
void spin_unlock(spinlock_t *l) {
// if (!spin_is_holding(l))
// panic("spin_unlock");
l->cpu = 0;
// Release: store 0 with .rl ordering.
uint32_t dummy;
__asm__ volatile("amoswap.w.rl %0, %2, (%1)\n" : "=&r"(dummy) : "r"(&l->v), "r"(0u) : "memory");
// __sync_synchronize(); // No loads/stores after this point
// __sync_lock_release(&lk->locked); // Essentially lk->locked = 0
// pop_off();
}
/**
* Test-and-test-and-set acquire with polite spinning + exponential backoff.
*/
// Optional: tiny pause/backoff (works even if Zihintpause isn't present).
// See: https://github.com/riscv/riscv-isa-manual/blob/main/src/zihintpause.adoc
static inline void cpu_relax(void) {
#if defined(__riscv_zihintpause)
__asm__ volatile("pause");
#else
__asm__ volatile("nop");
#endif
}
// Test-and-test-and-set acquire with polite spinning + exponential backoff.
void spin_lock(spinlock_t *l) {
uint32_t backoff = 1;
unsigned backoff = 1;
for (;;) {
if (spin_trylock(l))
return;
// Contended: spin on plain loads (no AMO) until it looks free.
while (__atomic_load_n(&l->v, __ATOMIC_RELAXED) != 0) {
for (uint32_t i = 0; i < backoff; ++i)
__asm__ volatile("nop"); /* NOTE: Pause can be used here if supported */
for (unsigned i = 0; i < backoff; ++i) cpu_relax();
if (backoff < 1u << 12)
backoff <<= 1;
}
// Try again; loop.
}
l->cpu = mycpu();
}
/**
* Check whether this cpu is holding the lock.
* Interrupts must be off.
*/
bool spin_is_holding(spinlock_t *l) {
int r;
r = (l->v && l->cpu == mycpu());
return r;
}

View file

@ -1,22 +1,60 @@
#ifndef KERNEL_Spinlock_H
#define KERNEL_Spinlock_H
#include <proc.h>
#include <stdbool.h>
#include <stdint.h>
/** Mutual exclusion spin lock */
struct Spinlock {
u32 locked; // Is the lock held?
// NOTE: Perhaps feature gate this?
// For debugging:
char *name; // Name of lock.
struct Cpu *cpu; // The cpu holding the lock.
};
/**
* Acquire the lock.
* Loops (spins) until the lock is acquired.
* Panics if the lock is already held by this cpu.
*/
void acquire(struct Spinlock *);
/**
* Check whether this cpu is holding the lock.
* Interrupts must be off.
*/
int holding(struct Spinlock *);
/**
* Initialize Spinlock
*/
void initlock(struct Spinlock *, char *);
/**
* Release the lock.
* Panics if the lock is not held.
*/
void release(struct Spinlock *);
/**
* @brief push_off/pop_off are like intr_off()/intr_on() except that they are
* matched: it takes two pop_off()s to undo two push_off()s. Also, if
* interrupts are initially off, then push_off, pop_off leaves them off.
*/
void push_off(void);
/** @copydoc pop_off */
void pop_off(void);
typedef struct {
volatile uint32_t v; // 0 = unlocked, 1 = locked
Cpu *cpu;
} spinlock_t;
uint32_t push_off(void);
uint32_t pop_off(void);
void spinlock_init(spinlock_t *l);
bool spin_trylock(spinlock_t *l);
void spin_unlock(spinlock_t *l);
bool spin_is_holding(spinlock_t *l);
void spin_lock(spinlock_t *l);
#endif

View file

@ -1,9 +0,0 @@
#ifndef STDDEF_H
#define STDDEF_H
#ifndef NULL
#define NULL ((void*)0)
#endif
#endif // STDDEF_H

View file

@ -1,20 +0,0 @@
#include <uart.h>
#include <mini-printf.h>
#include <stddef.h>
int stdout_puts(char *s, int len, void *unused) {
(void)unused;
// Example: UART write loop
for (int i = 0; i < len; i++) {
uart_putc(s[i]); // <-- your low-level "put char" routine
}
return len;
}
int kprintf(const char *restrict fmt, ...) {
va_list ap;
va_start(ap, fmt);
int ret = mini_vpprintf(stdout_puts, NULL, fmt, ap);
va_end(ap);
return ret;
}

View file

@ -1,18 +0,0 @@
#ifndef STDIO_H
#define STDIO_H
int stdout_puts(char *s, int len, void *unused);
int kprintf(const char *restrict format, ...);
// int fprintf(FILE *restrict stream, const char *restrict format, ...);
// int dprintf(int fd, const char *restrict format, ...);
// int sprintf(char *restrict str, const char *restrict format, ...);
// int snprintf(char str[restrict.size], size_t size, const char *restrict format, ...);
// int vprintf(const char *restrict format, va_list ap);
// int vfprintf(FILE *restrict stream, const char *restrict format, va_list ap);
// int vdprintf(int fd, const char *restrict format, va_list ap);
// int vsprintf(char *restrict str, const char *restrict format, va_list ap);
// int vsnprintf(char str[restrict.size], size_t size, const char *restrict format, va_list ap);
#endif // STDIO_H

View file

@ -4,3 +4,7 @@
void uart_putc(char c) {
*UART_BASE = c;
}
void uart_puts(const char *s) {
while (*s) uart_putc(*s++);
}

View file

@ -4,4 +4,7 @@
/** Send a single character to the UART device */
void uart_putc(char c);
/** Send a **NULL TERMINATED** string to the UART device */
void uart_puts(const char *s);
#endif

View file

@ -1,8 +1,6 @@
#ifndef PROC_H
#define PROC_H
#include <config.h>
#include <riscv.h>
#include <spinlock.h>
#include <stdint.h>
typedef enum {
@ -15,7 +13,7 @@ typedef enum {
} ProcessState;
/** Saved registers for kernel context switches. */
typedef struct Context {
struct Context {
uint64_t ra;
uint64_t sp;
@ -32,18 +30,18 @@ typedef struct Context {
uint64_t s9;
uint64_t s10;
uint64_t s11;
} Context;
};
/** Per-CPU state. */
typedef struct cpu_t {
struct Cpu {
struct Process *proc; // The process running on this cpu, or null.
struct Context context; // swtch() here to enter scheduler().
int noff; // Depth of push_off() nesting.
int intena; // Were interrupts enabled before push_off()?
} Cpu;
};
/** Saved registers for kernel context switches. */
typedef struct TrapFrame_t {
typedef struct {
/* 0 */ uint64_t kernel_satp; // kernel page table
/* 8 */ uint64_t kernel_sp; // top of process's kernel stack
/* 16 */ uint64_t kernel_trap; // usertrap()
@ -80,13 +78,11 @@ typedef struct TrapFrame_t {
/* 264 */ uint64_t t4;
/* 272 */ uint64_t t5;
/* 280 */ uint64_t t6;
} TrapFrame;
} TrapFrame_t;
Cpu *mycpu(void);
struct Cpu *mycpu(void);
extern Cpu cpus[NCPU];
extern struct Cpu cpus[NCPU];
/** Per-process state */
struct Proc {};
#endif

View file

@ -1,12 +1,10 @@
#include <config.h>
#include <kalloc.h>
#include <memory.h>
#include <panic.h>
#include <proc.h>
#include <riscv.h>
#include <spinlock.h>
#include <stdint.h>
#include <stdio.h>
#include <uart.h>
/**
@ -39,24 +37,30 @@ void start() {
if (id == 0) {
/* Here we will do a bunch of initialization steps */
kalloc_init();
uart_puts("Hello Neptune!\n");
spinlock_init(&sl);
kprintf("Hello Neptune!\n");
__sync_synchronize();
hold = 0;
} else {
while (hold);
}
// spin_lock(&sl);
//
// uart_puts("Hart number: ");
// uart_putc(id + '0');
// uart_putc('\n');
//
// spin_unlock(&sl);
if (id == 0) {
spin_lock(&sl);
kprintf("Core count: %d\n", max_hart);
if (max_hart == NCPU)
kprintf("All cores up!\n");
else
PANIC("Some cores seem to have been enumerated incorrectly!\n");
uart_puts("Core count: ");
uart_putc(max_hart + '0');
uart_putc('\n');
if (max_hart == NCPU) {
uart_puts("All cores up!");
uart_putc('\n');
}
spin_unlock(&sl);
}