/** * Mutual exclusion spin locks. * (Not mutexes as these are spinning locks). */ #include #include #include #include #include /** * The aquire() and release() functions control ownership of the lock. * To perform these operations, modern CPU's provide atomic instructions * that prevent the cores from stepping on each other's toes, otherwise known * as a deadlock. * * GCC provides a set of built-in functions that allow you to use atomic * instructions in an architecture-independent way. These functions are * defined in the GCC manual: * * See: https://gcc.gnu.org/onlinedocs/gcc/_005f_005fsync-Builtins.html * See: https://en.wikipedia.org/wiki/Memory_barrier * * On RISC-V, sync_lock_test_and_set turns into an atomic swap: * a5 = 1 * s1 = &lk->locked * amoswap.w.aq a5, a5, (s1) * * On RISC-V, sync_lock_release turns into an atomic swap: * s1 = &lk->locked * amoswap.w zero, zero, (s1) * * __sync_synchronize(); * * This function tells the C compiler and the processor to not move loads or * stores past this point, to ensure that the critical section's memory * references happen strictly after the lock is acquired/locked. * On RISC-V, this emits a fence instruction. */ /* * These are from the original xv6 implementation, with only slight modifications on their return type. * * push_off/pop_off are like intr_off()/intr_on() except that they are matched: * it takes two pop_off()s to undo two push_off()s. Also, if interrupts * are initially off, then push_off, pop_off leaves them off. */ uint32_t push_off(void) { int old = intr_get(); Cpu *cpu = mycpu(); intr_off(); if (cpu->noff == 0) cpu->intena = old; cpu->noff += 1; return cpu->noff; } uint32_t pop_off(void) { Cpu *cpu = mycpu(); if (intr_get()) PANIC("pop_off - interruptible"); if (cpu->noff < 1) PANIC("pop_off"); cpu->noff -= 1; if (cpu->noff == 0 && cpu->intena) intr_on(); return cpu->noff; } void spinlock_init(spinlock_t *l) { l->v = 0; } __attribute__((warn_unused_result)) bool spin_trylock(spinlock_t *l) { uint32_t old; // old = xchg_acquire(&l->v, 1) using AMO __asm__ volatile("amoswap.w.aq %0, %2, (%1)\n" : "=&r"(old) : "r"(&l->v), "r"(1u) : "memory"); return old == 0; } void spin_unlock(spinlock_t *l) { // if (!spin_is_holding(l)) // panic("spin_unlock"); l->cpu = 0; // Release: store 0 with .rl ordering. uint32_t dummy; __asm__ volatile("amoswap.w.rl %0, %2, (%1)\n" : "=&r"(dummy) : "r"(&l->v), "r"(0u) : "memory"); // __sync_synchronize(); // No loads/stores after this point // __sync_lock_release(&lk->locked); // Essentially lk->locked = 0 // pop_off(); } /** * Test-and-test-and-set acquire with polite spinning + exponential backoff. */ void spin_lock(spinlock_t *l) { uint32_t backoff = 1; for (;;) { if (spin_trylock(l)) return; while (__atomic_load_n(&l->v, __ATOMIC_RELAXED) != 0) { for (uint32_t i = 0; i < backoff; ++i) __asm__ volatile("nop"); /* NOTE: Pause can be used here if supported */ if (backoff < 1u << 12) backoff <<= 1; } } l->cpu = mycpu(); } /** * Check whether this cpu is holding the lock. * Interrupts must be off. */ bool spin_is_holding(spinlock_t *l) { int r; r = (l->v && l->cpu == mycpu()); return r; }