#include "freelist.h" /* Header block used to keep track of all the free blocks */ struct __attribute__((packed)) FreeListBlock { uint16_t next_offset; /* May be 8, 16, 32, 64, whatever */ }; /* Align to nearest multiple of align */ static inline size_t align_up_to(size_t n, size_t align) { return (n + align - 1) & ~(align - 1); } /* Convert pointer -> 1-based offset (0 means NULL) */ static inline uint32_t ptr_to_offset(FreeList *fl, void *ptr) { if (!ptr) return 0; // NULL maps to 0 uintptr_t diff = (uintptr_t)ptr - fl->start; return (uint32_t)(diff / fl->size) + 1; } /* Convert 1-based offset -> pointer (0 means NULL) */ static inline void *offset_to_ptr(FreeList *fl, uint32_t offset) { if (offset == 0) return NULL; // 0 = invalid/null return (void *)(fl->start + (uintptr_t)(offset - 1) * fl->size); } /* Initialize the FreeList */ int fl_init(FreeList *fl, uintptr_t start, size_t size_bytes, size_t itemsize) { /* Fiddle around according to your need, (void *) alignment seems to be enough, * but MAX_ALIGN_T is also an option. Especially for allocator implementation. */ size_t size = align_up_to(itemsize, sizeof(void *)); if (size < sizeof(FreeListBlock) || !fl) return 0; fl->start = start; fl->end = start + size_bytes; fl->size = size; fl->allocated = 0; FreeListBlock *block = (FreeListBlock *)start; for (size_t offset = 1; offset < fl_capacity(fl) + 1; offset++) { block->next_offset = (int32_t)offset; block = offset_to_ptr(fl, offset); } block->next_offset = 0; /* Last block */ fl->free = (FreeListBlock *)start; return 1; } /* Allocate some memory from the FreeList */ void *fl_alloc(FreeList *fl) { if (!fl->free) return NULL; FreeListBlock *m = fl->free; fl->free = offset_to_ptr(fl, fl->free->next_offset); /* May be null, which is fine */ fl->allocated++; /* Wipe it before sending it out, could use memset * here, or even wiping the entire block */ m->next_offset = 0; /* For reference: */ // memset((void *)m, 0, fl->size); /* Wipe entire block */ // memset((void *)m, 0, sizeof(FreeListBlock)); /* Wipe only header */ return ((void *)m); } /* Return some memory to the FreeList */ int fl_free(FreeList *fl, void *ptr) { if (!fl_is_managed(fl, ptr)) return 0; /* We cant free memory we do not own */ FreeListBlock *block = (FreeListBlock *)ptr; block->next_offset = ptr_to_offset(fl, fl->free); /* May be null, which is fine */ fl->free = block; fl->allocated--; return 1; } /* Returns how many slots are occupied */ size_t fl_allocated(FreeList *fl) { return fl->allocated; } /* Returns how many free slots are available (O(1)) */ size_t fl_available(FreeList *fl) { return fl_capacity(fl) - fl->allocated; } /* Returns the total amount of items the freelist will hold */ size_t fl_capacity(FreeList *fl) { return (fl->end - fl->start) / fl->size; } /* Check if a piece of memory is managed by the FreeList */ int fl_is_managed(FreeList *fl, void *ptr) { uintptr_t p = (uintptr_t)ptr; if (p < fl->start || p >= fl->end) { return 0; // outside pool } return ((p - fl->start) % fl->size) == 0; // aligned to block } /* Returns the ratio of metadata versus data as a scalar in range 0..1 */ float fl_utilization(FreeList *fl, size_t itemsize) { return (float)itemsize / fl->size; } /* Walks the free pages/slots, returns total count (O(n), given no cycles) */ size_t fl_check(FreeList *fl) { int avail = 0; FreeListBlock *cursor = fl->free; while (cursor) { avail++; if (!fl_is_managed(fl, cursor) || avail > fl_capacity(fl)) return 0; if (cursor->next_offset == 0) break; cursor = offset_to_ptr(fl, cursor->next_offset); } return avail; }