Add 4kb paging

This commit is contained in:
Sam Tebbs 2019-09-16 01:48:32 +01:00 committed by SamTebbs33
parent 4a1209785a
commit 48d80d92ae
3 changed files with 375 additions and 104 deletions

View file

@ -246,4 +246,5 @@ test "" {
_ = @import("gdt.zig"); _ = @import("gdt.zig");
_ = @import("idt.zig"); _ = @import("idt.zig");
_ = @import("syscalls.zig"); _ = @import("syscalls.zig");
_ = @import("paging.zig");
} }

View file

@ -1,83 +1,193 @@
const std = @import("std"); const std = @import("std");
const panic = @import("../../kmain.zig").panic; const expectEqual = std.testing.expectEqual;
const arch = @import("../../arch.zig").internals; const expect = std.testing.expect;
const builtin = @import("builtin");
const panic = @import("../../panic.zig");
const arch = @import("arch.zig");
const isr = @import("isr.zig"); const isr = @import("isr.zig");
const assert = std.debug.assert;
const MemProfile = @import("../../mem.zig").MemProfile; const MemProfile = @import("../../mem.zig").MemProfile;
const testing = @import("std").testing; const tty = @import("../../tty.zig");
const expectEqual = testing.expectEqual;
const expect = testing.expect;
extern var KERNEL_ADDR_OFFSET: *u32;
const ENTRIES_PER_DIRECTORY = 1024;
const PAGE_SIZE_4MB = 0x400000;
const PAGE_SIZE = PAGE_SIZE_4MB;
const PAGE_SIZE_4KB = PAGE_SIZE_4MB / 1024;
const PAGES_PER_DIR_ENTRY = PAGE_SIZE_4MB / PAGE_SIZE;
const PAGES_PER_DIR = ENTRIES_PER_DIRECTORY * PAGES_PER_DIR_ENTRY;
const PHYS_ADDR_OFFSET = 22;
const PhysAddr = u10;
const DirectoryEntry = u32;
const ENTRY_PRESENT = 0x1;
const ENTRY_WRITABLE = 0x2;
const ENTRY_USER = 0x4;
const ENTRY_WRITE_THROUGH = 0x8;
const ENTRY_CACHE_DISABLED = 0x10;
const ENTRY_ACCESSED = 0x20;
const ENTRY_ZERO = 0x40;
const ENTRY_4MB_PAGES = 0x80;
const ENTRY_IGNORED = 0x100;
const ENTRY_AVAILABLE = 0xE00;
const ENTRY_PAGE_ADDR = 0xFFC00000;
/// An array of directory entries and page tables. Forms the first level of paging and covers the entire 4GB memory space.
const Directory = packed struct { const Directory = packed struct {
/// The directory entries.
entries: [ENTRIES_PER_DIRECTORY]DirectoryEntry, entries: [ENTRIES_PER_DIRECTORY]DirectoryEntry,
/// The tables allocated for the directory. This is ignored by the CPU.
tables: [ENTRIES_PER_DIRECTORY]?*Table,
}; };
/// An array of table entries. Forms the second level of paging and covers a 4MB memory space.
const Table = packed struct {
/// The table entries.
entries: [ENTRIES_PER_TABLE]TableEntry,
};
/// All errors that can be thrown by paging functions.
const PagingError = error{ const PagingError = error{
/// Physical addresses are invalid (definition is up to the function).
InvalidPhysAddresses, InvalidPhysAddresses,
/// Virtual addresses are invalid (definition is up to the function).
InvalidVirtAddresses, InvalidVirtAddresses,
/// Physical and virtual addresses don't cover spaces of the same size.
PhysicalVirtualMismatch, PhysicalVirtualMismatch,
/// Physical addressses aren't aligned by page size.
UnalignedPhysAddresses, UnalignedPhysAddresses,
/// Virtual addressses aren't aligned by page size.
UnalignedVirtAddresses, UnalignedVirtAddresses,
}; };
/// An entry within a directory. References a single page table.
/// Bit 0: Present. Set if present in physical memory.
/// When not set, all remaining 31 bits are ignored and available for use.
/// Bit 1: Writable. Set if writable.
/// Bit 2: User. Set if accessible by user mode.
/// Bit 3: Write through. Set if write-through caching is enabled.
/// Bit 4: Cache disabled. Set if caching is disabled for this table.
/// Bit 5: Accessed. Set by the CPU when the table is accessed. Not cleared by CPU.
/// Bit 6: Zero.
/// Bit 7: Page size. Set if this entry covers a single 4MB page rather than 1024 4KB pages.
/// Bit 8: Ignored.
/// Bits 9-11: Ignored and available for use by kernel.
/// Bits 12-31: The 4KB aligned physical address of the corresponding page table.
/// Must be 4MB aligned if the page size bit is set.
const DirectoryEntry = u32;
/// An entry within a page table. References a single page.
/// Bit 0: Present. Set if present in physical memory.
/// When not set, all remaining 31 bits are ignored and available for use.
/// Bit 1: Writable. Set if writable.
/// Bit 2: User. Set if accessible by user mode.
/// Bit 3: Write through. Set if write-through caching is enabled.
/// Bit 4: Cache disabled. Set if caching is disabled for this page.
/// Bit 5: Accessed. Set by the CPU when the page is accessed. Not cleared by CPU.
/// Bit 6: Dirty. Set by the CPU when the page has been written to. Not cleared by the CPU.
/// Bit 7: Zero.
/// Bit 8: Global. Set if the cached address for this page shouldn't be updated when cr3 is changed.
/// Bits 9-11: Ignored and available for use by the kernel.
/// Bits 12-31: The 4KB aligned physical address mapped to this page.
const TableEntry = u32;
/// Each directory has 1024 entries
const ENTRIES_PER_DIRECTORY: u32 = 1024;
/// Each table has 1024 entries
const ENTRIES_PER_TABLE: u32 = 1024;
/// The number of bytes in 4MB
const PAGE_SIZE_4MB: u32 = 0x400000;
/// The number of bytes in 4KB
const PAGE_SIZE_4KB: u32 = PAGE_SIZE_4MB / 1024;
/// There are 1024 entries per directory with each one covering 4KB
const PAGES_PER_DIR_ENTRY: u32 = 1024;
/// There are 1 million pages per directory
const PAGES_PER_DIR: u32 = ENTRIES_PER_DIRECTORY * PAGES_PER_DIR_ENTRY;
/// The bitmasks for the bits in a DirectoryEntry
const DENTRY_PRESENT: u32 = 0x1;
const DENTRY_WRITABLE: u32 = 0x2;
const DENTRY_USER: u32 = 0x4;
const DENTRY_WRITE_THROUGH: u32 = 0x8;
const DENTRY_CACHE_DISABLED: u32 = 0x10;
const DENTRY_ACCESSED: u32 = 0x20;
const DENTRY_ZERO: u32 = 0x40;
const DENTRY_4MB_PAGES: u32 = 0x80;
const DENTRY_IGNORED: u32 = 0x100;
const DENTRY_AVAILABLE: u32 = 0xE00;
const DENTRY_PAGE_ADDR: u32 = 0xFFFFF000;
/// The bitmasks for the bits in a TableEntry
const TENTRY_PRESENT: u32 = 0x1;
const TENTRY_WRITABLE: u32 = 0x2;
const TENTRY_USER: u32 = 0x4;
const TENTRY_WRITE_THROUGH: u32 = 0x8;
const TENTRY_CACHE_DISABLED: u32 = 0x10;
const TENTRY_ACCESSED: u32 = 0x20;
const TENTRY_DIRTY: u32 = 0x40;
const TENTRY_ZERO: u32 = 0x80;
const TENTRY_GLOBAL: u32 = 0x100;
const TENTRY_AVAILABLE: u32 = 0xE00;
const TENTRY_PAGE_ADDR: u32 = 0xFFFFF000;
/// The kernel's virtual address offset. It's assigned in the init function and the virtToPhys test.
/// We can't just use KERNEL_ADDR_OFFSET since using externs in the virtToPhys test is broken in
/// release-safe. This is a workaround until that is fixed.
var ADDR_OFFSET: usize = undefined;
extern var KERNEL_ADDR_OFFSET: *u32;
///
/// Convert a virtual address to its physical counterpart by subtracting the kernel virtual offset from the virtual address.
///
/// Arguments:
/// IN virt: var - The virtual address to covert. Either an integer or pointer.
///
/// Return: @typeOf(virt)
/// The physical address.
///
inline fn virtToPhys(virt: var) @typeOf(virt) {
const offset = ADDR_OFFSET;
const T = @typeOf(virt);
return switch (@typeId(T)) {
.Pointer => @intToPtr(T, @ptrToInt(virt) - offset),
.Int => virt - offset,
else => @compileError("Only pointers and integers are supported"),
};
}
///
/// Convert a virtual address to an index within an array of directory entries.
///
/// Arguments:
/// IN virt: usize - The virtual address to convert.
///
/// Return: usize
/// The index into an array of directory entries.
///
inline fn virtToDirEntryIdx(virt: usize) usize {
return (virt / PAGE_SIZE_4MB) % ENTRIES_PER_DIRECTORY;
}
///
/// Convert a virtual address to an index within an array of table entries.
///
/// Arguments:
/// IN virt: usize - The virtual address to convert.
///
/// Return: usize
/// The index into an array of table entries.
///
inline fn virtToTableEntryIdx(virt: usize) usize {
return (virt / PAGE_SIZE_4KB) % ENTRIES_PER_TABLE;
}
/// ///
/// Map a page directory entry, setting the present, size, writable, write-through and physical address bits. /// Map a page directory entry, setting the present, size, writable, write-through and physical address bits.
/// Clears the user and cache disabled bits. Entry should be zero'ed. /// Clears the user and cache disabled bits. Entry should be zero'ed.
/// ///
/// Arguments: /// Arguments:
/// OUT entry: *DirectoryEntry - Unaligned directory entry /// OUT dir: *Directory - The directory that this entry is in
/// IN virt_addr: u32 - The virtual address being mapped /// IN virt_addr: usize - The start of the virtual space to map
/// IN phys_addr: u32 - The physical address at which to start mapping /// IN virt_end: usize - The end of the virtual space to map
/// IN phys_addr: usize - The start of the physical space to map
/// IN phys_end: usize - The end of the physical space to map
/// IN allocator: *Allocator - The allocator to use to map any tables needed /// IN allocator: *Allocator - The allocator to use to map any tables needed
/// ///
fn mapDirEntry(entry: *align(1) DirectoryEntry, virt_addr: u32, phys_addr: u32, allocator: *std.mem.Allocator) void { /// Error: PagingError || std.mem.Allocator.Error
entry.* |= ENTRY_PRESENT; /// PagingError.InvalidPhysAddresses - The physical start address is greater than the end.
entry.* |= ENTRY_WRITABLE; /// PagingError.InvalidVirtAddresses - The virtual start address is greater than the end or is larger than 4GB.
entry.* &= ~u32(ENTRY_USER); /// PagingError.PhysicalVirtualMismatch - The differences between the virtual addresses and the physical addresses aren't the same.
entry.* |= ENTRY_WRITE_THROUGH; /// PagingError.UnalignedPhysAddresses - One or both of the physical addresses aren't page size aligned.
entry.* &= ~u32(ENTRY_CACHE_DISABLED); /// PagingError.UnalignedVirtAddresses - One or both of the virtual addresses aren't page size aligned.
entry.* |= ENTRY_4MB_PAGES; /// std.mem.Allocator.Error.* - See std.mem.Allocator.alignedAlloc.
entry.* |= ENTRY_PAGE_ADDR & phys_addr;
}
/// ///
/// Map a page directory. The addresses passed must be page size aligned and be the same distance apart. fn mapDirEntry(dir: *Directory, virt_start: usize, virt_end: usize, phys_start: usize, phys_end: usize, allocator: *std.mem.Allocator) (PagingError || std.mem.Allocator.Error)!void {
///
/// Arguments:
/// OUT entry: *Directory - The directory to map
/// IN phys_start: u32 - The physical address at which to start mapping
/// IN phys_end: u32 - The physical address at which to stop mapping
/// IN virt_start: u32 - The virtual address at which to start mapping
/// IN virt_end: u32 - The virtual address at which to stop mapping
/// IN allocator: *Allocator - The allocator to use to map any tables needed
///
fn mapDir(dir: *Directory, phys_start: u32, phys_end: u32, virt_start: u32, virt_end: u32, allocator: *std.mem.Allocator) PagingError!void {
if (phys_start > phys_end) { if (phys_start > phys_end) {
return PagingError.InvalidPhysAddresses; return PagingError.InvalidPhysAddresses;
} }
@ -87,25 +197,109 @@ fn mapDir(dir: *Directory, phys_start: u32, phys_end: u32, virt_start: u32, virt
if (phys_end - phys_start != virt_end - virt_start) { if (phys_end - phys_start != virt_end - virt_start) {
return PagingError.PhysicalVirtualMismatch; return PagingError.PhysicalVirtualMismatch;
} }
if (!std.mem.isAligned(phys_start, PAGE_SIZE) or !std.mem.isAligned(phys_end, PAGE_SIZE)) { if (!std.mem.isAligned(phys_start, PAGE_SIZE_4KB) or !std.mem.isAligned(phys_end, PAGE_SIZE_4KB)) {
return PagingError.UnalignedPhysAddresses; return PagingError.UnalignedPhysAddresses;
} }
if (!std.mem.isAligned(virt_start, PAGE_SIZE) or !std.mem.isAligned(virt_end, PAGE_SIZE)) { if (!std.mem.isAligned(virt_start, PAGE_SIZE_4KB) or !std.mem.isAligned(virt_end, PAGE_SIZE_4KB)) {
return PagingError.UnalignedVirtAddresses; return PagingError.UnalignedVirtAddresses;
} }
var virt_addr = virt_start; const entry = virt_start / PAGE_SIZE_4MB;
var phys_addr = phys_start; if (entry >= ENTRIES_PER_DIRECTORY)
var page = virt_addr / PAGE_SIZE_4KB; return PagingError.InvalidVirtAddresses;
var entry_idx = virt_addr / PAGE_SIZE; var dir_entry = &dir.entries[entry];
while (entry_idx < ENTRIES_PER_DIRECTORY and virt_addr < virt_end) { dir_entry.* |= DENTRY_PRESENT;
mapDirEntry(&dir.entries[entry_idx], virt_addr, phys_addr, allocator); dir_entry.* |= DENTRY_WRITABLE;
phys_addr += PAGE_SIZE; dir_entry.* &= ~u32(DENTRY_USER);
virt_addr += PAGE_SIZE; dir_entry.* |= DENTRY_WRITE_THROUGH;
entry_idx += 1; dir_entry.* &= ~u32(DENTRY_CACHE_DISABLED);
dir_entry.* &= ~u32(DENTRY_4MB_PAGES);
// Only create a new table if one hasn't already been created for this dir entry.
// Prevents us from overriding previous mappings.
var table: *Table = undefined;
if (dir.tables[entry]) |tbl| {
table = tbl;
} else {
// Create a table and put the physical address in the dir entry
table = &(try allocator.alignedAlloc(Table, @truncate(u29, PAGE_SIZE_4KB), 1))[0];
@memset(@ptrCast([*]u8, table), 0, @sizeOf(Table));
const table_phys_addr = @ptrToInt(virtToPhys(table));
dir_entry.* |= @intCast(u32, DENTRY_PAGE_ADDR & table_phys_addr);
dir.tables[entry] = table;
}
// Map the table entries within the requested space
var virt = virt_start;
var phys = phys_start;
var tentry = virtToTableEntryIdx(virt);
while (virt < virt_end) : ({
virt += PAGE_SIZE_4KB;
phys += PAGE_SIZE_4KB;
tentry += 1;
}) {
try mapTableEntry(&table.entries[tentry], phys);
} }
} }
///
/// Map a table entry by setting its bits to the appropriate values.
/// Sets the entry to be present, writable, kernel access, write through, cache enabled, non-global and the page address bits.
///
/// Arguments:
/// OUT entry: *align(1) TableEntry - The entry to map. 1 byte aligned.
/// IN phys_addr: usize - The physical address to map the table entry to.
///
/// Error: PagingError
/// PagingError.UnalignedPhysAddresses - If the physical address isn't page size aligned.
///
fn mapTableEntry(entry: *align(1) TableEntry, phys_addr: usize) PagingError!void {
if (!std.mem.isAligned(phys_addr, PAGE_SIZE_4KB)) {
return PagingError.UnalignedPhysAddresses;
}
entry.* |= TENTRY_PRESENT;
entry.* |= TENTRY_WRITABLE;
entry.* &= ~u32(TENTRY_USER);
entry.* |= TENTRY_WRITE_THROUGH;
entry.* &= ~u32(TENTRY_CACHE_DISABLED);
entry.* &= ~u32(TENTRY_GLOBAL);
entry.* |= TENTRY_PAGE_ADDR & @intCast(u32, phys_addr);
}
///
/// Map a page directory. The addresses passed must be page size aligned and be the same distance apart.
///
/// Arguments:
/// OUT entry: *Directory - The directory to map
/// IN phys_start: usize - The physical address at which to start mapping
/// IN phys_end: usize - The physical address at which to stop mapping
/// IN virt_start: usize - The virtual address at which to start mapping
/// IN virt_end: usize - The virtual address at which to stop mapping
/// IN allocator: *Allocator - The allocator to use to map any tables needed
///
/// Error: std.mem.allocator.Error || PagingError
/// * - See mapDirEntry.
///
fn mapDir(dir: *Directory, phys_start: usize, phys_end: usize, virt_start: usize, virt_end: usize, allocator: *std.mem.Allocator) (std.mem.Allocator.Error || PagingError)!void {
var virt_addr = virt_start;
var phys_addr = phys_start;
var page = virt_addr / PAGE_SIZE_4KB;
var entry_idx = virt_addr / PAGE_SIZE_4MB;
while (entry_idx < ENTRIES_PER_DIRECTORY and virt_addr < virt_end) : ({
phys_addr += PAGE_SIZE_4MB;
virt_addr += PAGE_SIZE_4MB;
entry_idx += 1;
}) {
try mapDirEntry(dir, virt_addr, std.math.min(virt_end, virt_addr + PAGE_SIZE_4MB), phys_addr, std.math.min(phys_end, phys_addr + PAGE_SIZE_4MB), allocator);
}
}
///
/// Called when a page fault occurs.
///
/// Arguments:
/// IN state: *arch.InterruptContext - The CPU's state when the fault occured.
///
fn pageFault(state: *arch.InterruptContext) void { fn pageFault(state: *arch.InterruptContext) void {
@panic("Page fault"); @panic("Page fault");
} }
@ -118,58 +312,129 @@ fn pageFault(state: *arch.InterruptContext) void {
/// IN allocator: *std.mem.Allocator - The allocator to use /// IN allocator: *std.mem.Allocator - The allocator to use
/// ///
pub fn init(mem_profile: *const MemProfile, allocator: *std.mem.Allocator) void { pub fn init(mem_profile: *const MemProfile, allocator: *std.mem.Allocator) void {
ADDR_OFFSET = @ptrToInt(&KERNEL_ADDR_OFFSET);
// Calculate start and end of mapping // Calculate start and end of mapping
const v_start = std.mem.alignBackward(@ptrToInt(mem_profile.vaddr_start), PAGE_SIZE); const v_start = std.mem.alignBackward(@ptrToInt(mem_profile.vaddr_start), PAGE_SIZE_4KB);
const v_end = std.mem.alignForward(@ptrToInt(mem_profile.vaddr_end) + mem_profile.fixed_alloc_size, PAGE_SIZE); const v_end = std.mem.alignForward(@ptrToInt(mem_profile.vaddr_end) + mem_profile.fixed_alloc_size, PAGE_SIZE_4KB);
const p_start = std.mem.alignBackward(@ptrToInt(mem_profile.physaddr_start), PAGE_SIZE); const p_start = std.mem.alignBackward(@ptrToInt(mem_profile.physaddr_start), PAGE_SIZE_4KB);
const p_end = std.mem.alignForward(@ptrToInt(mem_profile.physaddr_end) + mem_profile.fixed_alloc_size, PAGE_SIZE); const p_end = std.mem.alignForward(@ptrToInt(mem_profile.physaddr_end) + mem_profile.fixed_alloc_size, PAGE_SIZE_4KB);
var tmp = allocator.alignedAlloc(Directory, PAGE_SIZE_4KB, 1) catch unreachable; var tmp = allocator.alignedAlloc(Directory, @truncate(u29, PAGE_SIZE_4KB), 1) catch panic.panicFmt(@errorReturnTrace(), "Failed to allocate page directory");
var kernel_directory = @ptrCast(*Directory, tmp.ptr); var kernel_directory = @ptrCast(*Directory, tmp.ptr);
@memset(@ptrCast([*]u8, kernel_directory), 0, @sizeOf(Directory)); @memset(@ptrCast([*]u8, kernel_directory), 0, @sizeOf(Directory));
mapDir(kernel_directory, p_start, p_end, v_start, v_end, allocator) catch unreachable; // Map in kernel
const dir_physaddr = @ptrToInt(kernel_directory) - @ptrToInt(&KERNEL_ADDR_OFFSET); mapDir(kernel_directory, p_start, p_end, v_start, v_end, allocator) catch panic.panicFmt(@errorReturnTrace(), "Failed to map kernel directory");
const tty_addr = tty.getVideoBufferAddress();
// If the previous mappping space didn't cover the tty buffer, do so now
if (v_start > tty_addr or v_end <= tty_addr) {
const tty_phys = virtToPhys(tty_addr);
const tty_buff_size = 32 * 1024;
mapDir(kernel_directory, tty_phys, tty_phys + tty_buff_size, tty_addr, tty_addr + tty_buff_size, allocator) catch panic.panicFmt(@errorReturnTrace(), "Failed to map vga buffer in kernel directory");
}
const dir_physaddr = @ptrToInt(virtToPhys(kernel_directory));
asm volatile ("mov %[addr], %%cr3" asm volatile ("mov %[addr], %%cr3"
: :
: [addr] "{eax}" (dir_physaddr) : [addr] "{eax}" (dir_physaddr)
); );
isr.registerIsr(14, pageFault) catch unreachable; isr.registerIsr(14, pageFault) catch panic.panicFmt(@errorReturnTrace(), "Failed to register page fault ISR");
} }
fn checkDirEntry(entry: DirectoryEntry, phys: u32) void { fn checkDirEntry(entry: DirectoryEntry, virt_start: usize, virt_end: usize, phys_start: usize, table: *Table) void {
expect(entry & ENTRY_WRITABLE != 0); expect(entry & DENTRY_PRESENT != 0);
expectEqual(entry & ENTRY_USER, 0); expect(entry & DENTRY_WRITABLE != 0);
expect(entry & ENTRY_WRITE_THROUGH != 0); expectEqual(entry & DENTRY_USER, 0);
expectEqual(entry & ENTRY_CACHE_DISABLED, 0); expect(entry & DENTRY_WRITE_THROUGH != 0);
expect(entry & ENTRY_4MB_PAGES != 0); expectEqual(entry & DENTRY_CACHE_DISABLED, 0);
expectEqual(entry & ENTRY_PAGE_ADDR, phys); expectEqual(entry & DENTRY_4MB_PAGES, 0);
expectEqual(entry & DENTRY_ZERO, 0);
var tentry_idx = virtToTableEntryIdx(virt_start);
var tentry_idx_end = virtToTableEntryIdx(virt_end);
var phys = phys_start;
while (tentry_idx < tentry_idx_end) : ({
tentry_idx += 1;
phys += PAGE_SIZE_4KB;
}) {
const tentry = table.entries[tentry_idx];
checkTableEntry(tentry, phys);
}
}
fn checkTableEntry(entry: TableEntry, page_phys: usize) void {
expect(entry & TENTRY_PRESENT != 0);
expect(entry & TENTRY_WRITABLE != 0);
expectEqual(entry & TENTRY_USER, 0);
expect(entry & TENTRY_WRITE_THROUGH != 0);
expectEqual(entry & TENTRY_CACHE_DISABLED, 0);
expectEqual(entry & TENTRY_ZERO, 0);
expectEqual(entry & TENTRY_GLOBAL, 0);
expectEqual(entry & TENTRY_PAGE_ADDR, @intCast(u32, page_phys));
}
test "virtToPhys" {
ADDR_OFFSET = 0xC0000000;
const offset: usize = ADDR_OFFSET;
expectEqual(virtToPhys(offset + 0), 0);
expectEqual(virtToPhys(offset + 123), 123);
expectEqual(virtToPhys(@intToPtr(*usize, offset + 123)), @intToPtr(*usize, 123));
}
test "virtToDirEntryIdx" {
expectEqual(virtToDirEntryIdx(0), 0);
expectEqual(virtToDirEntryIdx(123), 0);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB - 1), 0);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB), 1);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB + 1), 1);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB * 2), 2);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB * (ENTRIES_PER_DIRECTORY - 1)), ENTRIES_PER_DIRECTORY - 1);
}
test "virtToTableEntryIdx" {
expectEqual(virtToTableEntryIdx(0), 0);
expectEqual(virtToTableEntryIdx(123), 0);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB - 1), 0);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB), 1);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB + 1), 1);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB * 2), 2);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB * (ENTRIES_PER_TABLE - 1)), ENTRIES_PER_TABLE - 1);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB * (ENTRIES_PER_TABLE)), 0);
} }
test "mapDirEntry" { test "mapDirEntry" {
var direct = std.heap.DirectAllocator.init(); var allocator = std.heap.direct_allocator;
defer direct.deinit(); var dir: Directory = Directory{ .entries = [_]DirectoryEntry{0} ** ENTRIES_PER_DIRECTORY, .tables = [_]?*Table{null} ** ENTRIES_PER_DIRECTORY };
var allocator = &direct.allocator; var phys: usize = 0 * PAGE_SIZE_4MB;
var entry: DirectoryEntry = 0; const phys_end: usize = phys + PAGE_SIZE_4MB;
const phys: u32 = PAGE_SIZE * 2; const virt: usize = 1 * PAGE_SIZE_4MB;
const virt: u32 = PAGE_SIZE * 4; const virt_end: usize = virt + PAGE_SIZE_4MB;
mapDirEntry(@ptrCast(*align(1) DirectoryEntry, &entry), virt, phys, allocator); try mapDirEntry(&dir, virt, virt_end, phys, phys_end, allocator);
checkDirEntry(entry, phys);
const entry_idx = virtToDirEntryIdx(virt);
const entry = dir.entries[entry_idx];
const table = dir.tables[entry_idx] orelse unreachable;
checkDirEntry(entry, virt, virt_end, phys, table);
} }
test "mapDir" { test "mapDir" {
var direct = std.heap.DirectAllocator.init(); var allocator = std.heap.direct_allocator;
defer direct.deinit(); var dir = Directory{ .entries = [_]DirectoryEntry{0} ** ENTRIES_PER_DIRECTORY, .tables = [_]?*Table{null} ** ENTRIES_PER_DIRECTORY };
var allocator = &direct.allocator; const phys_start: usize = PAGE_SIZE_4MB * 2;
var dir = Directory{ .entries = []DirectoryEntry{0} ** ENTRIES_PER_DIRECTORY }; const virt_start: usize = PAGE_SIZE_4MB * 4;
const phys_start = PAGE_SIZE * 2; const phys_end: usize = PAGE_SIZE_4MB * 4;
const virt_start = PAGE_SIZE * 4; const virt_end: usize = PAGE_SIZE_4MB * 6;
const phys_end = PAGE_SIZE * 4;
const virt_end = PAGE_SIZE * 6;
mapDir(&dir, phys_start, phys_end, virt_start, virt_end, allocator) catch unreachable; mapDir(&dir, phys_start, phys_end, virt_start, virt_end, allocator) catch unreachable;
// Only 2 dir entries should be mapped
expectEqual(dir.entries[virt_start / PAGE_SIZE - 1], 0); var virt = virt_start;
checkDirEntry(dir.entries[virt_start / PAGE_SIZE], phys_start); var phys = phys_start;
checkDirEntry(dir.entries[virt_start / PAGE_SIZE + 1], phys_start + PAGE_SIZE); while (virt < virt_end) : ({
expectEqual(dir.entries[virt_start / PAGE_SIZE + 2], 0); virt += PAGE_SIZE_4MB;
phys += PAGE_SIZE_4MB;
}) {
const entry_idx = virtToDirEntryIdx(virt);
const entry = dir.entries[entry_idx];
const table = dir.tables[entry_idx] orelse unreachable;
checkDirEntry(entry, virt, virt + PAGE_SIZE_4MB, phys, table);
}
} }

View file

@ -506,7 +506,12 @@ pub fn setColour(new_colour: u8) void {
blank = vga.entry(0, colour); blank = vga.entry(0, colour);
} }
fn getVideoBufferAddress() usize { ///
/// Gets the video buffer's virtual address.
///
/// Return: usize
/// The virtual address of the video buffer
pub fn getVideoBufferAddress() usize {
return @ptrToInt(&KERNEL_ADDR_OFFSET) + 0xB8000; return @ptrToInt(&KERNEL_ADDR_OFFSET) + 0xB8000;
} }