Added RTC

Added I/O waits to PIC remapping

Added fmt step to build 

When building will format all the code to the standard

Fixed cascading interrupts

Re-named to selectAnd*Register. Moved switching on registers into emun


Removed build fmt step
This commit is contained in:
DrDeano 2020-01-15 19:50:41 +00:00
parent 96da426a3a
commit 7ab180f622
No known key found for this signature in database
GPG key ID: 96188600582B9ED7
8 changed files with 1336 additions and 14 deletions

View file

@ -7,6 +7,7 @@ const pic = @import("pic.zig");
const irq = @import("irq.zig");
const isr = @import("isr.zig");
const pit = @import("pit.zig");
const rtc = @import("rtc.zig");
const paging = @import("paging.zig");
const syscalls = @import("syscalls.zig");
const mem = @import("../../mem.zig");
@ -81,6 +82,13 @@ pub fn inb(port: u16) u8 {
);
}
///
/// Force the CPU to wait for an I/O operation to compete. Use port 0x80 as this is unused.
///
pub fn ioWait() void {
outb(0x80, 0);
}
///
/// Load the GDT and refreshing the code segment with the code segment offset of the kernel as we
/// are still in kernel land. Also loads the kernel data segment into all the other segment
@ -230,10 +238,11 @@ pub fn init(mb_info: *multiboot.multiboot_info_t, mem_profile: *const MemProfile
isr.init();
irq.init();
pit.init();
paging.init(mb_info, mem_profile, allocator);
pit.init();
rtc.init();
syscalls.init();
enableInterrupts();
@ -246,6 +255,8 @@ test "" {
_ = @import("isr.zig");
_ = @import("irq.zig");
_ = @import("pit.zig");
_ = @import("cmos.zig");
_ = @import("rtc.zig");
_ = @import("syscalls.zig");
_ = @import("paging.zig");
}

View file

@ -0,0 +1,463 @@
const std = @import("std");
const builtin = @import("builtin");
const is_test = builtin.is_test;
const expectEqual = std.testing.expectEqual;
const build_options = @import("build_options");
const mock_path = build_options.arch_mock_path;
const arch = if (is_test) @import(mock_path ++ "arch_mock.zig") else @import("arch.zig");
/// The current year to be used for calculating the 4 digit year, as the CMOS return the last two
/// digits of the year.
const CURRENT_CENTURY: u8 = 2000;
/// The port address for the CMOS command register.
const ADDRESS: u16 = 0x70;
/// The port address for the CMOS data register.
const DATA: u16 = 0x71;
/// The register location for returning the seconds, (0 - 59).
const REGISTER_SECOND: u8 = 0x00;
/// The register location for returning the minute, (0 - 59).
const REGISTER_MINUTE: u8 = 0x02;
/// The register location for returning the hours, (0 - 23 or 0 - 12 depending if a 12hr or 24hr
/// clock).
const REGISTER_HOUR: u8 = 0x04;
/// The register location for returning the weekday, (0 - 6). Very unreliable, so will calculate
/// the day of the week instead.
const REGISTER_WEEKDAY: u8 = 0x06;
/// The register location for returning the day, (0 - 31).
const REGISTER_DAY: u8 = 0x07;
/// The register location for returning the month, (0 - 11).
const REGISTER_MONTH: u8 = 0x08;
/// The register location for returning the year, (0 - 99).
const REGISTER_YEAR: u8 = 0x09;
/// The register location for returning the century.
const REGISTER_CENTURY: u8 = 0x32;
/// The register location for return the status A register.
const STATUS_REGISTER_A: u8 = 0x0A;
/// The register location for return the status B register.
const STATUS_REGISTER_B: u8 = 0x0B;
/// The register location for return the status C register.
const STATUS_REGISTER_C: u8 = 0x0C;
/// The non-mockable interrupts are on the 8th bit of port 0x70 which is the register select port
/// for the CMOS. This will need to be disabled when selecting CMOS registers.
const NMI_BIT: u8 = 0x80;
/// The enum for selecting the status register to read from
pub const StatusRegister = enum {
/// Status register A
A,
/// Status register B
B,
/// Status register C
C,
///
/// Get the register index for the status registers
///
/// Arguments:
/// IN reg: StatusRegister - The enum that represents one of the 3 status registers.
///
/// Return: u8
/// The register index for one of the 3 status registers.
///
pub fn getRegister(reg: StatusRegister) u8 {
return switch (reg) {
.A => STATUS_REGISTER_A,
.B => STATUS_REGISTER_B,
.C => STATUS_REGISTER_C,
};
}
};
/// The enum for selecting the real time clock registers.
pub const RtcRegister = enum {
/// The seconds register
SECOND,
/// The minutes register
MINUTE,
/// The hours register
HOUR,
/// The days register
DAY,
/// The months register
MONTH,
/// The year register
YEAR,
/// The century register
CENTURY,
///
/// Get the register index for the RTC registers
///
/// Arguments:
/// IN reg: RtcRegister - The enum that represents one of the RTC registers.
///
/// Return: u8
/// The register index for one of the RTC registers.
///
pub fn getRegister(reg: RtcRegister) u8 {
return switch (reg) {
.SECOND => REGISTER_SECOND,
.MINUTE => REGISTER_MINUTE,
.HOUR => REGISTER_HOUR,
.DAY => REGISTER_DAY,
.MONTH => REGISTER_MONTH,
.YEAR => REGISTER_YEAR,
.CENTURY => REGISTER_CENTURY,
};
}
};
///
/// Tell the CMOS chip to select the given register ready for read or writing to. This also
/// disables the NMI when disable_nmi is true.
///
/// Arguments:
/// IN reg: u8 - The register index to select in the CMOS chip.
/// IN comptime disable_nmi: bool - Whether to disable NMI when selecting a register.
///
inline fn selectRegister(reg: u8, comptime disable_nmi: bool) void {
if (disable_nmi) {
arch.outb(ADDRESS, reg | NMI_BIT);
} else {
arch.outb(ADDRESS, reg);
}
}
///
/// Write to the selected register to the CMOS chip.
///
/// Arguments:
/// IN data: u8 - The data to write to the selected register.
///
inline fn writeRegister(data: u8) void {
arch.outb(DATA, data);
}
///
/// Read the selected register from the CMOS chip.
///
/// Return: u8
/// The value in the selected register.
///
inline fn readRegister() u8 {
return arch.inb(DATA);
}
///
/// Select then read a register from the CMOS chip. This include a I/O wait to ensure the CMOS chip
/// has time to select the register.
///
/// Arguments:
/// IN reg: u8 - The register index to select in the CMOS chip.
/// IN comptime disable_nmi: bool - Whether to disable NMI when selecting a register.
///
/// Return: u8
/// The value in the selected register.
///
inline fn selectAndReadRegister(reg: u8, comptime disable_nmi: bool) u8 {
selectRegister(reg, disable_nmi);
arch.ioWait();
return readRegister();
}
///
/// Select then write to a register to the CMOS chip. This include a I/O wait to ensure the CMOS chip
/// has time to select the register.
///
/// Arguments:
/// IN reg: u8 - The register index to select in the CMOS chip.
/// IN data: u8 - The data to write to the selected register.
/// IN comptime disable_nmi: bool - Whether to disable NMI when selecting a register.
///
inline fn selectAndWriteRegister(reg: u8, data: u8, comptime disable_nmi: bool) void {
selectRegister(reg, disable_nmi);
arch.ioWait();
writeRegister(data);
}
///
/// Read a register that corresponds to a real time clock register.
///
/// Arguments:
/// IN reg: RtcRegister - A RTC register to select in the CMOS chip.
///
/// Return: u8
/// The value in the selected register.
///
pub fn readRtcRegister(reg: RtcRegister) u8 {
return selectAndReadRegister(reg.getRegister(), false);
}
///
/// Read a status register in the CMOS chip.
///
/// Arguments:
/// IN reg: StatusRegister - The status register to select.
/// IN comptime disable_nmi: bool - Whether to disable NMI when selecting a register.
///
/// Return: u8
/// The value in the selected register.
///
pub fn readStatusRegister(reg: StatusRegister, comptime disable_nmi: bool) u8 {
return selectAndReadRegister(reg.getRegister(), disable_nmi);
}
///
/// Write to a status register in the CMOS chip.
///
/// Arguments:
/// IN reg: StatusRegister - The status register to select.
/// IN data: u8 - The data to write to the selected register.
/// IN comptime disable_nmi: bool - Whether to disable NMI when selecting a register.
///
pub fn writeStatusRegister(reg: StatusRegister, data: u8, comptime disable_nmi: bool) void {
selectAndWriteRegister(reg.getRegister(), data, disable_nmi);
}
test "selectRegister" {
arch.initTest();
defer arch.freeTest();
arch.addTestParams("outb", .{ ADDRESS, STATUS_REGISTER_A });
const reg = STATUS_REGISTER_A;
selectRegister(reg, false);
}
test "selectRegister no NMI" {
arch.initTest();
defer arch.freeTest();
arch.addTestParams("outb", .{ ADDRESS, STATUS_REGISTER_A | NMI_BIT });
const reg = STATUS_REGISTER_A;
selectRegister(reg, true);
}
test "writeRegister" {
arch.initTest();
defer arch.freeTest();
arch.addTestParams("outb", .{ DATA, @as(u8, 0xAA) });
const data = @as(u8, 0xAA);
writeRegister(data);
}
test "readRegister" {
arch.initTest();
defer arch.freeTest();
arch.addTestParams("inb", .{ DATA, @as(u8, 0x55) });
const expected = @as(u8, 0x55);
const actual = readRegister();
expectEqual(expected, actual);
}
test "selectAndReadRegister NMI" {
arch.initTest();
defer arch.freeTest();
arch.addTestParams("outb", .{ ADDRESS, STATUS_REGISTER_C });
arch.addTestParams("inb", .{ DATA, @as(u8, 0x44) });
arch.addConsumeFunction("ioWait", arch.mock_ioWait);
const reg = STATUS_REGISTER_C;
const expected = @as(u8, 0x44);
const actual = selectAndReadRegister(reg, false);
expectEqual(expected, actual);
}
test "selectAndReadRegister no NMI" {
arch.initTest();
defer arch.freeTest();
arch.addTestParams("outb", .{ ADDRESS, STATUS_REGISTER_C | NMI_BIT });
arch.addTestParams("inb", .{ DATA, @as(u8, 0x44) });
arch.addConsumeFunction("ioWait", arch.mock_ioWait);
const reg = STATUS_REGISTER_C;
const expected = @as(u8, 0x44);
const actual = selectAndReadRegister(reg, true);
expectEqual(expected, actual);
}
test "selectAndWriteRegister NMI" {
arch.initTest();
defer arch.freeTest();
arch.addTestParams("outb", .{ ADDRESS, STATUS_REGISTER_C, DATA, @as(u8, 0x88) });
arch.addConsumeFunction("ioWait", arch.mock_ioWait);
const reg = STATUS_REGISTER_C;
const data = @as(u8, 0x88);
selectAndWriteRegister(reg, data, false);
}
test "selectAndWriteRegister no NMI" {
arch.initTest();
defer arch.freeTest();
arch.addTestParams("outb", .{ ADDRESS, STATUS_REGISTER_C | NMI_BIT, DATA, @as(u8, 0x88) });
arch.addConsumeFunction("ioWait", arch.mock_ioWait);
const reg = STATUS_REGISTER_C;
const data = @as(u8, 0x88);
selectAndWriteRegister(reg, data, true);
}
test "readRtcRegister" {
arch.initTest();
defer arch.freeTest();
arch.addRepeatFunction("ioWait", arch.mock_ioWait);
const rtc_regs = [_]RtcRegister{ RtcRegister.SECOND, RtcRegister.MINUTE, RtcRegister.HOUR, RtcRegister.DAY, RtcRegister.MONTH, RtcRegister.YEAR, RtcRegister.CENTURY };
for (rtc_regs) |reg| {
const r = switch (reg) {
.SECOND => REGISTER_SECOND,
.MINUTE => REGISTER_MINUTE,
.HOUR => REGISTER_HOUR,
.DAY => REGISTER_DAY,
.MONTH => REGISTER_MONTH,
.YEAR => REGISTER_YEAR,
.CENTURY => REGISTER_CENTURY,
};
arch.addTestParams("outb", .{ ADDRESS, r });
arch.addTestParams("inb", .{ DATA, @as(u8, 0x44) });
const expected = @as(u8, 0x44);
const actual = readRtcRegister(reg);
expectEqual(expected, actual);
}
}
test "readStatusRegister NMI" {
arch.initTest();
defer arch.freeTest();
arch.addRepeatFunction("ioWait", arch.mock_ioWait);
const status_regs = [_]StatusRegister{ StatusRegister.A, StatusRegister.B, StatusRegister.C };
for (status_regs) |reg| {
const r = switch (reg) {
.A => STATUS_REGISTER_A,
.B => STATUS_REGISTER_B,
.C => STATUS_REGISTER_C,
};
arch.addTestParams("outb", .{ ADDRESS, r });
arch.addTestParams("inb", .{ DATA, @as(u8, 0x78) });
const expected = @as(u8, 0x78);
const actual = readStatusRegister(reg, false);
expectEqual(expected, actual);
}
}
test "readStatusRegister no NMI" {
arch.initTest();
defer arch.freeTest();
arch.addRepeatFunction("ioWait", arch.mock_ioWait);
const status_regs = [_]StatusRegister{ StatusRegister.A, StatusRegister.B, StatusRegister.C };
for (status_regs) |reg| {
const r = switch (reg) {
.A => STATUS_REGISTER_A,
.B => STATUS_REGISTER_B,
.C => STATUS_REGISTER_C,
};
arch.addTestParams("outb", .{ ADDRESS, r | NMI_BIT });
arch.addTestParams("inb", .{ DATA, @as(u8, 0x78) });
const expected = @as(u8, 0x78);
const actual = readStatusRegister(reg, true);
expectEqual(expected, actual);
}
}
test "writeStatusRegister NMI" {
arch.initTest();
defer arch.freeTest();
arch.addRepeatFunction("ioWait", arch.mock_ioWait);
const status_regs = [_]StatusRegister{ StatusRegister.A, StatusRegister.B, StatusRegister.C };
for (status_regs) |reg| {
const r = switch (reg) {
.A => STATUS_REGISTER_A,
.B => STATUS_REGISTER_B,
.C => STATUS_REGISTER_C,
};
arch.addTestParams("outb", .{ ADDRESS, r, DATA, @as(u8, 0x43) });
const data = @as(u8, 0x43);
writeStatusRegister(reg, data, false);
}
}
test "writeStatusRegister no NMI" {
arch.initTest();
defer arch.freeTest();
arch.addRepeatFunction("ioWait", arch.mock_ioWait);
const status_regs = [_]StatusRegister{ StatusRegister.A, StatusRegister.B, StatusRegister.C };
for (status_regs) |reg| {
const r = switch (reg) {
.A => STATUS_REGISTER_A,
.B => STATUS_REGISTER_B,
.C => STATUS_REGISTER_C,
};
arch.addTestParams("outb", .{ ADDRESS, r | NMI_BIT, DATA, @as(u8, 0x43) });
const data = @as(u8, 0x43);
writeStatusRegister(reg, data, true);
}
}

View file

@ -436,23 +436,36 @@ pub fn init() void {
// Initiate
sendCommandMaster(ICW1_INITIALISATION | ICW1_EXPECT_ICW4);
arch.ioWait();
sendCommandSlave(ICW1_INITIALISATION | ICW1_EXPECT_ICW4);
arch.ioWait();
// Offsets
sendDataMaster(ICW2_MASTER_REMAP_OFFSET);
arch.ioWait();
sendDataSlave(ICW2_SLAVE_REMAP_OFFSET);
arch.ioWait();
// IRQ lines
sendDataMaster(ICW3_MASTER_IRQ_MAP_FROM_SLAVE);
arch.ioWait();
sendDataSlave(ICW3_SLAVE_IRQ_MAP_TO_MASTER);
arch.ioWait();
// 80x86 mode
sendDataMaster(ICW4_80x86_MODE);
arch.ioWait();
sendDataSlave(ICW4_80x86_MODE);
arch.ioWait();
// Mask all interrupts
sendDataMaster(0xFF);
arch.ioWait();
sendDataSlave(0xFF);
arch.ioWait();
// Clear the IRQ for the slave
clearMask(IRQ_CASCADE_FOR_SLAVE);
log.logInfo("Done\n", .{});
@ -763,6 +776,8 @@ test "init" {
arch.initTest();
defer arch.freeTest();
arch.addRepeatFunction("ioWait", arch.mock_ioWait);
// Just a long list of OUT instructions setting up the PIC
arch.addTestParams("outb", .{
MASTER_COMMAND_REG,
@ -785,8 +800,12 @@ test "init" {
@as(u8, 0xFF),
SLAVE_DATA_REG,
@as(u8, 0xFF),
MASTER_DATA_REG,
@as(u8, 0xFB),
});
arch.addTestParams("inb", .{ MASTER_DATA_REG, @as(u8, 0xFF) });
init();
}
@ -794,7 +813,8 @@ test "init" {
/// Test that all the PIC masks are set so no interrupts can fire.
///
fn rt_picAllMasked() void {
if (readDataMaster() != 0xFF) {
// The master will have interrupt 2 clear because this is the link to the slave (third bit)
if (readDataMaster() != 0xFB) {
panic(@errorReturnTrace(), "Master masks are not set, found: {}\n", .{readDataMaster()});
}

745
src/kernel/arch/x86/rtc.zig Normal file
View file

@ -0,0 +1,745 @@
const std = @import("std");
const builtin = @import("builtin");
const is_test = builtin.is_test;
const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual;
const expectError = std.testing.expectError;
const build_options = @import("build_options");
const mock_path = build_options.arch_mock_path;
const arch = @import("arch.zig");
const log = @import("../../log.zig");
const pic = @import("pic.zig");
const pit = @import("pit.zig");
const irq = @import("irq.zig");
const cmos = if (is_test) @import(mock_path ++ "cmos_mock.zig") else @import("cmos.zig");
const panic = if (is_test) @import(mock_path ++ "panic_mock.zig").panic else @import("../../panic.zig").panic;
/// The Century register is unreliable. We need a APIC interface to infer if we have a century
/// register. So this is a current TODO.
const CURRENT_CENTURY: u32 = 2000;
/// TODO: To do with the unreliable century register. Once have APIC, can use this as a sanity check
/// if the the century register gives a wild answer then the other RTC values maybe wild. So then
/// could report that the CMOS chip is faulty or the battery is dyeing.
const CENTURY_REGISTER: bool = false;
/// A structure to hold all the date and time information in the RTC.
const DateTime = struct {
second: u32,
minute: u32,
hour: u32,
day: u32,
month: u32,
year: u32,
century: u32,
day_of_week: u32,
};
/// The error set that can be returned from some RTC functions.
const RtcError = error{
/// If setting the rate for interrupts is less than 3 or greater than 15.
RateError,
};
/// The number of ticks that has passed when RTC was initially set up.
var ticks: u32 = 0;
///
/// Checks if the CMOS chip isn't updating the RTC registers. Call this before reading any RTC
/// registers so don't get inconsistent values.
///
/// Return: bool
/// Whether the CMOS chip is buzzy and a update is in progress.
///
fn isBuzzy() bool {
return (cmos.readStatusRegister(cmos.StatusRegister.A, false) & 0x80) != 0;
}
///
/// Calculate the day of the week from the given day, month and year.
///
/// Arguments:
/// IN date_time: DateTime - The DateTime structure that holds the current day, month and year.
///
/// Return: u8
/// A number that represents the day of the week. 1 = Sunday, 2 = Monday, ...
///
fn calcDayOfWeek(date_time: DateTime) u32 {
const t = [_]u8{ 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 };
const year = date_time.year - @boolToInt(date_time.month < 3);
const month = date_time.month;
const day = date_time.day;
return (year + (year / 4) - (year / 100) + (year / 400) + t[month - 1] + day) % 7;
}
///
/// Check if the RTC is in binary coded decimal mode. If the RTC ic counting in BCD, then the 3rd
/// bit in the status register B will be set.
///
/// Return: bool
/// When the RTC is counting in BCD.
///
fn isBcd() bool {
const reg_b = cmos.readStatusRegister(cmos.StatusRegister.B, false);
return reg_b & 0x04 != 0;
}
///
/// Check if the RTC in 12 hour mode. If the RTC is in 12 hour mode, then the 2nd bit in the status
/// register B is set and the most significant bit on the hour field is set.
///
/// Arguments:
/// IN date_time: DateTime - The DateTime structure containing at least the hour field set.
///
/// Return: bool
/// Whether the RTC is in 12 hour mode.
///
fn is12Hr(date_time: DateTime) bool {
const reg_b = cmos.readStatusRegister(cmos.StatusRegister.B, false);
return reg_b & 0x02 != 0 and date_time.hour & 0x80 != 0;
}
///
/// Convert BCD to binary.
///
/// Arguments:
/// IN bcd: u32 - The binary coded decimal value to convert
///
/// Return: u32
/// The converted BCD value.
///
fn bcdToBinary(bcd: u32) u32 {
return ((bcd & 0xF0) >> 1) + ((bcd & 0xF0) >> 3) + (bcd & 0xf);
}
///
/// Read the real time clock registers and return them in the DateTime structure. This will read
/// the seconds, minutes, hours, days, months, years, century and day of the week.
///
/// Return: DateTime
/// The data from the CMOS RTC registers.
///
fn readRtcRegisters() DateTime {
// Make sure there isn't a update in progress
while (isBuzzy()) {}
var date_time = DateTime{
.second = cmos.readRtcRegister(cmos.RtcRegister.SECOND),
.minute = cmos.readRtcRegister(cmos.RtcRegister.MINUTE),
.hour = cmos.readRtcRegister(cmos.RtcRegister.HOUR),
.day = cmos.readRtcRegister(cmos.RtcRegister.DAY),
.month = cmos.readRtcRegister(cmos.RtcRegister.MONTH),
.year = cmos.readRtcRegister(cmos.RtcRegister.YEAR),
.century = if (CENTURY_REGISTER) cmos.readRtcRegister(cmos.RtcRegister.CENTURY) else CURRENT_CENTURY,
// This will be filled in later
.day_of_week = 0,
};
// The day of the week register is also very unreliable, so is better to calculate it
date_time.day_of_week = calcDayOfWeek(date_time);
return date_time;
}
///
/// Read a stable time from the real time clock registers on the CMOS chip and return a BCD and
/// 12 hour converted date and time.
///
/// Return: DateTime
/// The data from the CMOS RTC registers with correct BCD conversions, 12 hour conversions and
/// the century added to the year.
///
fn readRtc() DateTime {
var date_time1 = readRtcRegisters();
var date_time2 = readRtcRegisters();
// Use the method: Read the registers twice and check if they are the same so to avoid
// inconsistent values due to RTC updates
var compare = false;
inline for (@typeInfo(DateTime).Struct.fields) |field| {
compare = compare or @field(date_time1, field.name) != @field(date_time2, field.name);
}
while (compare) {
date_time1 = readRtcRegisters();
date_time2 = readRtcRegisters();
compare = false;
inline for (@typeInfo(DateTime).Struct.fields) |field| {
compare = compare or @field(date_time1, field.name) != @field(date_time2, field.name);
}
}
// Convert BCD to binary if necessary
if (isBcd()) {
date_time1.second = bcdToBinary(date_time1.second);
date_time1.minute = bcdToBinary(date_time1.minute);
// Needs a special calculation because the upper bit is set
date_time1.hour = ((date_time1.hour & 0x0F) + (((date_time1.hour & 0x70) / 16) * 10)) | (date_time1.hour & 0x80);
date_time1.day = bcdToBinary(date_time1.day);
date_time1.month = bcdToBinary(date_time1.month);
date_time1.year = bcdToBinary(date_time1.year);
if (CENTURY_REGISTER) {
date_time1.century = bcdToBinary(date_time1.century);
}
}
// Need to add on the century to the year
if (CENTURY_REGISTER) {
date_time1.year += date_time1.century * 100;
} else {
date_time1.year += CURRENT_CENTURY;
}
// Convert to 24hr time
if (is12Hr(date_time1)) {
date_time1.hour = ((date_time1.hour & 0x7F) + 12) % 24;
}
return date_time1;
}
///
/// The interrupt handler for the RTC.
///
/// Arguments:
/// IN ctx: *arch.InterruptContext - Pointer to the interrupt context containing the contents
/// of the register at the time of the interrupt.
///
fn rtcHandler(ctx: *arch.InterruptContext) void {
ticks +%= 1;
// Need to read status register C
const reg_c = cmos.readStatusRegister(cmos.StatusRegister.C, false);
}
///
/// Set the rate at which the interrupts will fire. Ranges from 0x3 to 0xF. Where the frequency
/// is determined by: frequency = 32768 >> (rate-1); This will assume the interrupts are disabled.
///
/// Arguments:
/// IN rate: u4 - The rate value to set the frequency to.
///
/// Error: RtcError
/// RtcError.RateError - If the rate is less than 3.
///
fn setRate(rate: u8) RtcError!void {
if (rate < 3 or rate > 0xF) {
return RtcError.RateError;
}
// Need to disable the NMI for this process
const status_a = cmos.readStatusRegister(cmos.StatusRegister.A, true);
cmos.writeStatusRegister(cmos.StatusRegister.A, (status_a & 0xF0) | rate, true);
}
///
/// Enable interrupts for the RTC. This will assume the interrupts have been disabled before hand.
///
fn enableInterrupts() void {
// Need to disable the NMI for this process
const status_b = cmos.readStatusRegister(cmos.StatusRegister.B, true);
// Set the 7th bit to enable interrupt
cmos.writeStatusRegister(cmos.StatusRegister.B, status_b | 0x40, true);
}
///
/// Initialise the RTC.
///
pub fn init() void {
log.logInfo("Init rtc\n", .{});
// Register the interrupt handler
irq.registerIrq(pic.IRQ_REAL_TIME_CLOCK, rtcHandler) catch |err| switch (err) {
error.IrqExists => {
panic(@errorReturnTrace(), "IRQ for RTC, IRQ number: {} exists", .{pic.IRQ_REAL_TIME_CLOCK});
},
error.InvalidIrq => {
panic(@errorReturnTrace(), "IRQ for RTC, IRQ number: {} is invalid", .{pic.IRQ_REAL_TIME_CLOCK});
},
};
// Need to disable interrupts went setting up the RTC
arch.disableInterrupts();
// Set the interrupt rate to 512Hz
setRate(7) catch |err| switch (err) {
error.RateError => {
panic(@errorReturnTrace(), "Setting rate error", .{});
},
};
// Enable RTC interrupts
enableInterrupts();
// Read status register C to clear any interrupts that may have happened during set up
//const reg_c = cmos.readStatusRegister(cmos.StatusRegister.C, false);
// Can now enable interrupts
arch.enableInterrupts();
const reg_c = cmos.readStatusRegister(cmos.StatusRegister.C, false);
log.logInfo("Done\n", .{});
if (build_options.rt_test) runtimeTests();
}
test "isBuzzy not buzzy" {
cmos.initTest();
defer cmos.freeTest();
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.A, false, @as(u8, 0x60) },
);
expect(!isBuzzy());
}
test "isBuzzy buzzy" {
cmos.initTest();
defer cmos.freeTest();
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.A, false, @as(u8, 0x80) },
);
expect(isBuzzy());
}
test "calcDayOfWeek" {
var date_time = DateTime{
.second = 0,
.minute = 0,
.hour = 0,
.day = 10,
.month = 1,
.year = 2020,
.century = 0,
.day_of_week = 0,
};
var actual = calcDayOfWeek(date_time);
var expected = @as(u32, 5);
expectEqual(expected, actual);
date_time.day = 20;
date_time.month = 7;
date_time.year = 1940;
actual = calcDayOfWeek(date_time);
expected = @as(u32, 6);
expectEqual(expected, actual);
date_time.day = 9;
date_time.month = 11;
date_time.year = 2043;
actual = calcDayOfWeek(date_time);
expected = @as(u32, 1);
expectEqual(expected, actual);
date_time.day = 1;
date_time.month = 1;
date_time.year = 2000;
actual = calcDayOfWeek(date_time);
expected = @as(u32, 6);
expectEqual(expected, actual);
}
test "isBcd not BCD" {
cmos.initTest();
defer cmos.freeTest();
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x00) },
);
expect(!isBcd());
}
test "isBcd BCD" {
cmos.initTest();
defer cmos.freeTest();
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x04) },
);
expect(isBcd());
}
test "is12Hr not 12Hr" {
const date_time = DateTime{
.second = 0,
.minute = 0,
.hour = 0,
.day = 0,
.month = 0,
.year = 0,
.century = 0,
.day_of_week = 0,
};
cmos.initTest();
defer cmos.freeTest();
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x00) },
);
expect(!is12Hr(date_time));
}
test "is12Hr 12Hr" {
const date_time = DateTime{
.second = 0,
.minute = 0,
.hour = 0x80,
.day = 0,
.month = 0,
.year = 0,
.century = 0,
.day_of_week = 0,
};
cmos.initTest();
defer cmos.freeTest();
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x02) },
);
expect(is12Hr(date_time));
}
test "bcdToBinary" {
var expected = @as(u32, 59);
var actual = bcdToBinary(0x59);
expectEqual(expected, actual);
expected = @as(u32, 48);
actual = bcdToBinary(0x48);
expectEqual(expected, actual);
expected = @as(u32, 1);
actual = bcdToBinary(0x01);
expectEqual(expected, actual);
}
test "readRtcRegisters" {
cmos.initTest();
defer cmos.freeTest();
// Have 2 buzzy loops
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.A, false, @as(u8, 0x80), cmos.StatusRegister.A, false, @as(u8, 0x80), cmos.StatusRegister.A, false, @as(u8, 0x00) },
);
// All the RTC registers without century as it isn't supported yet
cmos.addTestParams("readRtcRegister", .{
cmos.RtcRegister.SECOND, @as(u8, 1),
cmos.RtcRegister.MINUTE, @as(u8, 2),
cmos.RtcRegister.HOUR, @as(u8, 3),
cmos.RtcRegister.DAY, @as(u8, 10),
cmos.RtcRegister.MONTH, @as(u8, 1),
cmos.RtcRegister.YEAR, @as(u8, 20),
});
const expected = DateTime{
.second = 1,
.minute = 2,
.hour = 3,
.day = 10,
.month = 1,
.year = 20,
.century = 2000,
.day_of_week = 5,
};
const actual = readRtcRegisters();
expectEqual(expected, actual);
}
test "readRtc unstable read" {
cmos.initTest();
defer cmos.freeTest();
// No buzzy loop
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.A, false, @as(u8, 0x00), cmos.StatusRegister.A, false, @as(u8, 0x00) },
);
// Reading the RTC registers twice, second time is one second ahead
cmos.addTestParams("readRtcRegister", .{
cmos.RtcRegister.SECOND, @as(u8, 1),
cmos.RtcRegister.MINUTE, @as(u8, 2),
cmos.RtcRegister.HOUR, @as(u8, 3),
cmos.RtcRegister.DAY, @as(u8, 10),
cmos.RtcRegister.MONTH, @as(u8, 1),
cmos.RtcRegister.YEAR, @as(u8, 20),
cmos.RtcRegister.SECOND, @as(u8, 2),
cmos.RtcRegister.MINUTE, @as(u8, 2),
cmos.RtcRegister.HOUR, @as(u8, 3),
cmos.RtcRegister.DAY, @as(u8, 10),
cmos.RtcRegister.MONTH, @as(u8, 1),
cmos.RtcRegister.YEAR, @as(u8, 20),
});
// Will try again, and now stable
// No buzzy loop
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.A, false, @as(u8, 0x00), cmos.StatusRegister.A, false, @as(u8, 0x00) },
);
cmos.addTestParams("readRtcRegister", .{
cmos.RtcRegister.SECOND, @as(u8, 2),
cmos.RtcRegister.MINUTE, @as(u8, 2),
cmos.RtcRegister.HOUR, @as(u8, 3),
cmos.RtcRegister.DAY, @as(u8, 10),
cmos.RtcRegister.MONTH, @as(u8, 1),
cmos.RtcRegister.YEAR, @as(u8, 20),
cmos.RtcRegister.SECOND, @as(u8, 2),
cmos.RtcRegister.MINUTE, @as(u8, 2),
cmos.RtcRegister.HOUR, @as(u8, 3),
cmos.RtcRegister.DAY, @as(u8, 10),
cmos.RtcRegister.MONTH, @as(u8, 1),
cmos.RtcRegister.YEAR, @as(u8, 20),
});
// Not BCD
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x00) },
);
// Not 12hr
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x00) },
);
const expected = DateTime{
.second = 2,
.minute = 2,
.hour = 3,
.day = 10,
.month = 1,
.year = 2020,
.century = 2000,
.day_of_week = 5,
};
const actual = readRtc();
expectEqual(expected, actual);
}
test "readRtc is BCD" {
cmos.initTest();
defer cmos.freeTest();
// No buzzy loop
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.A, false, @as(u8, 0x00), cmos.StatusRegister.A, false, @as(u8, 0x00) },
);
// Reading the RTC registers once
cmos.addTestParams("readRtcRegister", .{
cmos.RtcRegister.SECOND, @as(u8, 0x30),
cmos.RtcRegister.MINUTE, @as(u8, 0x59),
cmos.RtcRegister.HOUR, @as(u8, 0x11),
cmos.RtcRegister.DAY, @as(u8, 0x10),
cmos.RtcRegister.MONTH, @as(u8, 0x1),
cmos.RtcRegister.YEAR, @as(u8, 0x20),
cmos.RtcRegister.SECOND, @as(u8, 0x30),
cmos.RtcRegister.MINUTE, @as(u8, 0x59),
cmos.RtcRegister.HOUR, @as(u8, 0x11),
cmos.RtcRegister.DAY, @as(u8, 0x10),
cmos.RtcRegister.MONTH, @as(u8, 0x1),
cmos.RtcRegister.YEAR, @as(u8, 0x20),
});
// BCD
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x04) },
);
// Not 12hr
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x00) },
);
const expected = DateTime{
.second = 30,
.minute = 59,
.hour = 11,
.day = 10,
.month = 1,
.year = 2020,
.century = 2000,
.day_of_week = 5,
};
const actual = readRtc();
expectEqual(expected, actual);
}
test "readRtc is 12 hours" {
cmos.initTest();
defer cmos.freeTest();
// No buzzy loop
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.A, false, @as(u8, 0x00), cmos.StatusRegister.A, false, @as(u8, 0x00) },
);
// Reading the RTC registers once
cmos.addTestParams("readRtcRegister", .{
cmos.RtcRegister.SECOND, @as(u8, 1),
cmos.RtcRegister.MINUTE, @as(u8, 2),
cmos.RtcRegister.HOUR, @as(u8, 0x83),
cmos.RtcRegister.DAY, @as(u8, 10),
cmos.RtcRegister.MONTH, @as(u8, 1),
cmos.RtcRegister.YEAR, @as(u8, 20),
cmos.RtcRegister.SECOND, @as(u8, 1),
cmos.RtcRegister.MINUTE, @as(u8, 2),
cmos.RtcRegister.HOUR, @as(u8, 0x83),
cmos.RtcRegister.DAY, @as(u8, 10),
cmos.RtcRegister.MONTH, @as(u8, 1),
cmos.RtcRegister.YEAR, @as(u8, 20),
});
// Not BCD
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x00) },
);
// 12hr
cmos.addTestParams(
"readStatusRegister",
.{ cmos.StatusRegister.B, false, @as(u8, 0x02) },
);
const expected = DateTime{
.second = 1,
.minute = 2,
.hour = 15,
.day = 10,
.month = 1,
.year = 2020,
.century = 2000,
.day_of_week = 5,
};
const actual = readRtc();
expectEqual(expected, actual);
}
test "setRate below 3" {
expectError(RtcError.RateError, setRate(0));
expectError(RtcError.RateError, setRate(1));
expectError(RtcError.RateError, setRate(2));
}
test "setRate" {
cmos.initTest();
defer cmos.freeTest();
cmos.addTestParams("readStatusRegister", .{ cmos.StatusRegister.A, true, @as(u8, 0x10) });
cmos.addTestParams("writeStatusRegister", .{ cmos.StatusRegister.A, @as(u8, 0x17), true });
const rate = @as(u8, 7);
try setRate(rate);
}
test "enableInterrupts" {
cmos.initTest();
defer cmos.freeTest();
cmos.addTestParams("readStatusRegister", .{ cmos.StatusRegister.B, true, @as(u8, 0x20) });
cmos.addTestParams("writeStatusRegister", .{ cmos.StatusRegister.B, @as(u8, 0x60), true });
enableInterrupts();
}
///
/// Check that the IRQ is registered correctly
///
fn rt_init() void {
var irq_exists = false;
irq.registerIrq(pic.IRQ_REAL_TIME_CLOCK, rtcHandler) catch |err| switch (err) {
error.IrqExists => {
// We should get this error
irq_exists = true;
},
error.InvalidIrq => {
panic(@errorReturnTrace(), "IRQ for RTC, IRQ number: {} is invalid", .{pic.IRQ_REAL_TIME_CLOCK});
},
};
if (!irq_exists) {
panic(@errorReturnTrace(), "IRQ for RTC doesn't exists\n", .{});
}
// Check the rate
const status_a = cmos.readStatusRegister(cmos.StatusRegister.A, false);
if (status_a & @as(u8, 0x0F) != 7) {
panic(@errorReturnTrace(), "Rate not set properly, got: {}\n", .{status_a & @as(u8, 0x0F)});
}
// Check if interrupts are enabled
const status_b = cmos.readStatusRegister(cmos.StatusRegister.B, true);
if (status_b & ~@as(u8, 0x40) == 0) {
panic(@errorReturnTrace(), "Interrupts not enabled\n", .{});
}
log.logInfo("RTC: Tested init\n", .{});
}
///
/// Check if the interrupt handler is called after a sleep so check that the RTC interrupts fire.
///
fn rt_interrupts() void {
const prev_ticks = ticks;
pit.waitTicks(100);
if (prev_ticks == ticks) {
panic(@errorReturnTrace(), "No interrupt happened\n", .{});
}
log.logInfo("RTC: Tested interrupts\n", .{});
}
///
/// Run all the runtime tests.
///
fn runtimeTests() void {
rt_init();
rt_interrupts();
}

View file

@ -10,12 +10,14 @@ def get_test_cases(TestCase):
TestCase("ISR tests", [r"ISR: Tested registered handlers", r"ISR: Tested opened IDT entries"]),
TestCase("IRQ init", [r"Init irq", r"Done"]),
TestCase("IRQ tests", [r"IRQ: Tested registered handlers", r"IRQ: Tested opened IDT entries"]),
TestCase("Paging init", [r"Init paging", r"Done"]),
TestCase("Paging tests", [r"Paging: Tested accessing unmapped memory", r"Paging: Tested accessing mapped memory"]),
TestCase("PIT init", [r"Init pit"]),
TestCase("PIT init", [r".+"], r"\[DEBUG\] "),
TestCase("PIT init", [r"Done"]),
TestCase("PIT tests", [r"PIT: Tested init", r"PIT: Tested wait ticks", r"PIT: Tested wait ticks 2"]),
TestCase("Paging init", [r"Init paging", r"Done"]),
TestCase("Paging tests", [r"Paging: Tested accessing unmapped memory", r"Paging: Tested accessing mapped memory"]),
TestCase("RTC init", [r"Init rtc", r"Done"]),
TestCase("RTC tests", [r"RTC: Tested init", r"RTC: Tested interrupts"]),
TestCase("Syscalls init", [r"Init syscalls", r"Done"]),
TestCase("Syscall tests", [r"Syscalls: Tested no args", r"Syscalls: Tested 1 arg", r"Syscalls: Tested 2 args", r"Syscalls: Tested 3 args", r"Syscalls: Tested 4 args", r"Syscalls: Tested 5 args"])
]

View file

@ -101,3 +101,5 @@ pub fn init(mb_info: *multiboot.multiboot_info_t, mem_profile: *const MemProfile
pub fn mock_disableInterrupts() void {}
pub fn mock_enableInterrupts() void {}
pub fn mock_ioWait() void {}

View file

@ -0,0 +1,34 @@
const mock_framework = @import("mock_framework.zig");
pub const initTest = mock_framework.initTest;
pub const freeTest = mock_framework.freeTest;
pub const addTestParams = mock_framework.addTestParams;
pub const addConsumeFunction = mock_framework.addConsumeFunction;
pub const addRepeatFunction = mock_framework.addRepeatFunction;
pub const StatusRegister = enum {
A,
B,
C,
};
pub const RtcRegister = enum {
SECOND,
MINUTE,
HOUR,
DAY,
MONTH,
YEAR,
CENTURY,
};
pub fn readRtcRegister(reg: RtcRegister) u8 {
return mock_framework.performAction("readRtcRegister", u8, .{reg});
}
pub fn readStatusRegister(reg: StatusRegister, comptime disable_nmi: bool) u8 {
return mock_framework.performAction("readStatusRegister", u8, .{ reg, disable_nmi });
}
pub fn writeStatusRegister(reg: StatusRegister, data: u8, comptime disable_nmi: bool) void {
return mock_framework.performAction("writeStatusRegister", void, .{ reg, data, disable_nmi });
}

View file

@ -7,6 +7,7 @@ const TailQueue = std.TailQueue;
const warn = std.debug.warn;
const gdt = @import("gdt_mock.zig");
const idt = @import("idt_mock.zig");
const cmos = @import("cmos_mock.zig");
///
/// The enumeration of types that the mocking framework supports. These include basic types like u8
@ -18,6 +19,8 @@ const DataElementType = enum {
U8,
U16,
U32,
ECmosStatusRegister,
ECmosRtcRegister,
PTR_CONST_GdtPtr,
PTR_CONST_IdtPtr,
ERROR_IDTERROR_VOID,
@ -34,6 +37,9 @@ const DataElementType = enum {
FN_IU8_IU8_OU16,
FN_IU16_IU8_OVOID,
FN_IU16_IU16_OVOID,
FN_IECmosStatusRegister_IBOOL_OU8,
FN_IECmosStatusRegister_IU8_IBOOL_OVOID,
FN_IECmosRtcRegister_OU8,
FN_IU8_IEFNOVOID_OERRORIDTERRORVOID,
FN_IU8_INFNOVOID_OERRORIDTERRORVOID,
FN_IPTRCONSTGDTPTR_OVOID,
@ -44,6 +50,9 @@ const DataElementType = enum {
/// A tagged union of all the data elements that the mocking framework can work with. This can be
/// expanded to add new types. This is needed as need a list of data that all have different types,
/// so this wraps the data into a union, (which is of one type) so can have a list of them.
/// When https://github.com/ziglang/zig/issues/383 anf https://github.com/ziglang/zig/issues/2907
/// is done, can programitaclly create types for this. Can use a compile time block that loops
/// through the available basic types and create function types so don't have a long list.
///
const DataElement = union(DataElementType) {
BOOL: bool,
@ -51,6 +60,8 @@ const DataElement = union(DataElementType) {
U8: u8,
U16: u16,
U32: u32,
ECmosStatusRegister: cmos.StatusRegister,
ECmosRtcRegister: cmos.RtcRegister,
PTR_CONST_GdtPtr: *const gdt.GdtPtr,
PTR_CONST_IdtPtr: *const idt.IdtPtr,
ERROR_IDTERROR_VOID: idt.IdtError!void,
@ -67,6 +78,9 @@ const DataElement = union(DataElementType) {
FN_IU8_IU8_OU16: fn (u8, u8) u16,
FN_IU16_IU8_OVOID: fn (u16, u8) void,
FN_IU16_IU16_OVOID: fn (u16, u16) void,
FN_IECmosStatusRegister_IBOOL_OU8: fn (cmos.StatusRegister, bool) u8,
FN_IECmosStatusRegister_IU8_IBOOL_OVOID: fn (cmos.StatusRegister, u8, bool) void,
FN_IECmosRtcRegister_OU8: fn (cmos.RtcRegister) u8,
FN_IU8_IEFNOVOID_OERRORIDTERRORVOID: fn (u8, extern fn () void) idt.IdtError!void,
FN_IU8_INFNOVOID_OERRORIDTERRORVOID: fn (u8, fn () callconv(.Naked) void) idt.IdtError!void,
FN_IPTRCONSTGDTPTR_OVOID: fn (*const gdt.GdtPtr) void,
@ -151,6 +165,8 @@ fn Mock() type {
u8 => DataElement{ .U8 = arg },
u16 => DataElement{ .U16 = arg },
u32 => DataElement{ .U32 = arg },
cmos.StatusRegister => DataElement{ .ECmosStatusRegister = arg },
cmos.RtcRegister => DataElement{ .ECmosRtcRegister = arg },
*const gdt.GdtPtr => DataElement{ .PTR_CONST_GdtPtr = arg },
*const idt.IdtPtr => DataElement{ .PTR_CONST_IdtPtr = arg },
idt.IdtError!void => DataElement{ .ERROR_IDTERROR_VOID = arg },
@ -167,6 +183,9 @@ fn Mock() type {
fn (u8, u8) u16 => DataElement{ .FN_IU8_IU8_OU16 = arg },
fn (u16, u8) void => DataElement{ .FN_IU16_IU8_OVOID = arg },
fn (u16, u16) void => DataElement{ .FN_IU16_IU16_OVOID = arg },
fn (cmos.StatusRegister, bool) u8 => DataElement{ .FN_IECmosStatusRegister_IBOOL_OU8 = arg },
fn (cmos.StatusRegister, u8, bool) void => DataElement{ .FN_IECmosStatusRegister_IU8_IBOOL_OVOID = arg },
fn (cmos.RtcRegister) u8 => DataElement{ .FN_IECmosRtcRegister_OU8 = arg },
fn (*const gdt.GdtPtr) void => DataElement{ .FN_IPTRCONSTGDTPTR_OVOID = arg },
fn (*const idt.IdtPtr) void => DataElement{ .FN_IPTRCONSTIDTPTR_OVOID = arg },
fn (u8, extern fn () void) idt.IdtError!void => DataElement{ .FN_IU8_IEFNOVOID_OERRORIDTERRORVOID = arg },
@ -191,6 +210,8 @@ fn Mock() type {
u8 => DataElementType.U8,
u16 => DataElementType.U16,
u32 => DataElementType.U32,
cmos.StatusRegister => DataElementType.ECmosStatusRegister,
cmos.RtcRegister => DataElementType.ECmosRtcRegister,
*const gdt.GdtPtr => DataElement.PTR_CONST_GdtPtr,
*const idt.IdtPtr => DataElement.PTR_CONST_IdtPtr,
idt.IdtError!void => DataElement.ERROR_IDTERROR_VOID,
@ -206,6 +227,9 @@ fn Mock() type {
fn (u8, u8) u16 => DataElementType.FN_IU8_IU8_OU16,
fn (u16, u8) void => DataElementType.FN_IU16_IU8_OVOID,
fn (u16, u16) void => DataElementType.FN_IU16_IU16_OVOID,
fn (cmos.StatusRegister, bool) u8 => DataElementType.FN_IECmosStatusRegister_IBOOL_OU8,
fn (cmos.StatusRegister, u8, bool) void => DataElementType.FN_IECmosStatusRegister_IU8_IBOOL_OVOID,
fn (cmos.RtcRegister) u8 => DataElementType.FN_IECmosRtcRegister_OU8,
fn (*const gdt.GdtPtr) void => DataElementType.FN_IPTRCONSTGDTPTR_OVOID,
fn (*const idt.IdtPtr) void => DataElementType.FN_IPTRCONSTIDTPTR_OVOID,
fn (u8, extern fn () void) idt.IdtError!void => DataElementType.FN_IU8_IEFNOVOID_OERRORIDTERRORVOID,
@ -232,6 +256,8 @@ fn Mock() type {
u8 => element.U8,
u16 => element.U16,
u32 => element.U32,
cmos.StatusRegister => element.ECmosStatusRegister,
cmos.RtcRegister => element.ECmosRtcRegister,
*const gdt.GdtPtr => element.PTR_CONST_GdtPtr,
*const idt.IdtPtr => element.PTR_CONST_IdtPtr,
idt.IdtError!void => element.ERROR_IDTERROR_VOID,
@ -247,6 +273,9 @@ fn Mock() type {
fn (u8, u8) u16 => element.FN_IU8_IU8_OU16,
fn (u16, u8) void => element.FN_IU16_IU8_OVOID,
fn (u16, u16) void => element.FN_IU16_IU16_OVOID,
fn (cmos.StatusRegister, bool) u8 => element.FN_IECmosStatusRegister_IBOOL_OU8,
fn (cmos.StatusRegister, u8, bool) void => element.FN_IECmosStatusRegister_IU8_IBOOL_OVOID,
fn (cmos.RtcRegister) u8 => element.FN_IECmosRtcRegister_OU8,
fn (*const gdt.GdtPtr) void => element.FN_IPTRCONSTGDTPTR_OVOID,
fn (*const idt.IdtPtr) void => element.FN_IPTRCONSTIDTPTR_OVOID,
fn (u8, extern fn () void) idt.IdtError!void => element.FN_IU8_IEFNOVOID_OERRORIDTERRORVOID,
@ -261,7 +290,7 @@ fn Mock() type {
///
/// Arguments:
/// IN RetType: type - The return type of the function.
/// IN params: arglist - The argument list for the function.
/// IN params: var - The argument list for the function.
///
/// Return: type
/// A function type that represents the return type and its arguments.
@ -271,7 +300,7 @@ fn Mock() type {
0 => fn () RetType,
1 => fn (@TypeOf(params[0])) RetType,
2 => fn (@TypeOf(params[0]), @TypeOf(params[1])) RetType,
else => @compileError("Couldn't generate function type for " ++ params.len ++ "parameters\n"),
else => @compileError("Couldn't generate function type for " ++ len ++ " parameters\n"),
};
}
@ -377,7 +406,7 @@ fn Mock() type {
/// perform a action.
/// IN fun_name: []const u8 - The function name to act on.
/// IN RetType: type - The return type of the function being mocked.
/// IN params: arglist - The list of parameters of the mocked function.
/// IN params: var - The list of parameters of the mocked function.
///
/// Return: RetType
/// The return value of the mocked function. This can be void.
@ -418,11 +447,18 @@ fn Mock() type {
// Waiting for this:
// error: compiler bug: unable to call var args function at compile time. https://github.com/ziglang/zig/issues/313
// to be resolved
comptime const param_len = [1]u8{switch (params.len) {
0...9 => params.len + @as(u8, '0'),
else => unreachable,
}};
const expected_function = switch (params.len) {
0 => fn () RetType,
1 => fn (@TypeOf(params[0])) RetType,
2 => fn (@TypeOf(params[0]), @TypeOf(params[1])) RetType,
else => @compileError("Couldn't generate function type for " ++ params.len ++ "parameters\n"),
3 => fn (@TypeOf(params[0]), @TypeOf(params[1]), @TypeOf(params[2])) RetType,
else => @compileError("Couldn't generate function type for " ++ param_len ++ " parameters\n"),
};
// Get the corresponding DataElementType
@ -438,11 +474,12 @@ fn Mock() type {
action_list.destroyNode(test_node, GlobalAllocator);
// The data element will contain the function to call
var r = switch (params.len) {
const r = switch (params.len) {
0 => actual_function(),
1 => actual_function(params[0]),
2 => actual_function(params[0], params[1]),
else => @compileError(params.len ++ " or more parameters not supported"),
3 => actual_function(params[0], params[1], params[2]),
else => @compileError(param_len ++ " or more parameters not supported"),
};
break :ret r;
@ -451,11 +488,18 @@ fn Mock() type {
// Do the same for ActionType.ConsumeFunctionCall but instead of
// popping the function, just peak
const test_element = action.data;
comptime const param_len = [1]u8{switch (params.len) {
0...9 => params.len + @as(u8, '0'),
else => unreachable,
}};
const expected_function = switch (params.len) {
0 => fn () RetType,
1 => fn (@TypeOf(params[0])) RetType,
2 => fn (@TypeOf(params[0]), @TypeOf(params[1])) RetType,
else => @compileError("Couldn't generate function type for " ++ params.len ++ "parameters\n"),
3 => fn (@TypeOf(params[0]), @TypeOf(params[1]), @TypeOf(params[2])) RetType,
else => @compileError("Couldn't generate function type for " ++ param_len ++ " parameters\n"),
};
// Get the corresponding DataElementType
@ -472,7 +516,8 @@ fn Mock() type {
0 => actual_function(),
1 => actual_function(params[0]),
2 => actual_function(params[0], params[1]),
else => @compileError(params.len ++ " or more parameters not supported"),
3 => actual_function(params[0], params[1], params[2]),
else => @compileError(param_len ++ " or more parameters not supported"),
};
break :ret r;
@ -634,7 +679,7 @@ pub fn addRepeatFunction(comptime fun_name: []const u8, function: var) void {
/// Arguments:
/// IN fun_name: []const u8 - The function name to act on.
/// IN RetType: type - The return type of the function being mocked.
/// IN params: arglist - The list of parameters of the mocked function.
/// IN params: var - The list of parameters of the mocked function.
///
/// Return: RetType
/// The return value of the mocked function. This can be void.