Generate the mocking framework (a bit)

Instead of adding new types in 5 different places, this adds a generation tool that you add the type once and it will be populated in the framework for you.
This is defo one of those over engineered projects, but I had fun making it.

Replaces empty spaces with const


Refactor spaces
This commit is contained in:
DrDeano 2020-10-10 00:25:09 +01:00
parent ccef3e2eb4
commit 7cafcec49e
No known key found for this signature in database
GPG key ID: 96188600582B9ED7
4 changed files with 922 additions and 173 deletions

View file

@ -99,22 +99,21 @@ pub fn build(b: *Builder) !void {
unit_tests.addBuildOption(TestMode, "test_mode", test_mode); unit_tests.addBuildOption(TestMode, "test_mode", test_mode);
unit_tests.addBuildOption([]const u8, "mock_path", mock_path); unit_tests.addBuildOption([]const u8, "mock_path", mock_path);
unit_tests.addBuildOption([]const u8, "arch_mock_path", arch_mock_path); unit_tests.addBuildOption([]const u8, "arch_mock_path", arch_mock_path);
unit_tests.setTarget(.{ .cpu_arch = target.cpu_arch });
if (builtin.os.tag != .windows) { if (builtin.os.tag != .windows) {
unit_tests.enable_qemu = true; unit_tests.enable_qemu = true;
} }
unit_tests.setTarget(.{ .cpu_arch = target.cpu_arch }); // Run the mock gen
const mock_gen = b.addExecutable("mock_gen", "test/gen_types.zig");
mock_gen.setMainPkgPath(".");
const mock_gen_run = mock_gen.run();
unit_tests.step.dependOn(&mock_gen_run.step);
test_step.dependOn(&unit_tests.step); test_step.dependOn(&unit_tests.step);
const rt_test_step = b.step("rt-test", "Run runtime tests"); const rt_test_step = b.step("rt-test", "Run runtime tests");
const build_mode_str = switch (build_mode) {
.Debug => "",
.ReleaseSafe => "-Drelease-safe",
.ReleaseFast => "-Drelease-fast",
.ReleaseSmall => "-Drelease-small",
};
var qemu_args_al = ArrayList([]const u8).init(b.allocator); var qemu_args_al = ArrayList([]const u8).init(b.allocator);
defer qemu_args_al.deinit(); defer qemu_args_al.deinit();

258
test/gen_types.zig Normal file
View file

@ -0,0 +1,258 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const File = std.fs.File;
// Check duplicate types
comptime {
@setEvalBranchQuota(types.len * types.len * 7);
inline for (types) |t1, i| {
inline for (types) |t2, j| {
if (i != j) {
if (std.mem.eql(u8, t1[0], t2[0])) {
@compileError("Duplicate types: " ++ t1[0]);
} else if (std.mem.eql(u8, t1[1], t2[1])) {
@compileError("Duplicate enum literal: " ++ t1[1]);
}
}
}
}
}
/// The types needed for mocking
/// The format is as follows:
/// 1. The type represented as a string. This is because @typeName doesn't play nicely with
/// all types so this way, what is put here is what you get when generated. There can only
/// be one of each type.
/// 2. The enum to represent the type. See other below for example names. These have to be
/// unique.
/// 3. The import name for a type (what would go in the @import()) without the .zig. This is
/// optional as some types won't need an import. If a type has already been imported, then
/// this can be omitted. Currently this is a single import, but this can be extended to have
/// a comma separated list of import with types that contain types from multiple places.
/// 4. The sub import. This is what would come after the @import() but before the type to be
/// imported. An easy example is the Allocator where the sub import would be std.mem with no
/// import as @import("std") is already included. Another example is if including a type
/// from a struct.
/// 5. The base type to include. This is different to the type in (1) as will exclude pointer.
/// This will be the name of the type to be included.
const types = .{
.{ "bool", "BOOL", "", "", "" },
.{ "u4", "U4", "", "", "" },
.{ "u8", "U8", "", "", "" },
.{ "u16", "U16", "", "", "" },
.{ "u32", "U32", "", "", "" },
.{ "usize", "USIZE", "", "", "" },
.{ "StatusRegister", "STATUSREGISTER", "cmos_mock", "", "StatusRegister" },
.{ "RtcRegister", "RTCREGISTER", "cmos_mock", "", "RtcRegister" },
.{ "IdtPtr", "IDTPTR", "idt_mock", "", "IdtPtr" },
.{ "*const GdtPtr", "PTR_CONST_GDTPTR", "gdt_mock", "", "GdtPtr" },
.{ "*const IdtPtr", "PTR_CONST_IDTPTR", "idt_mock", "", "IdtPtr" },
.{ "*Task", "PTR_TASK", "task_mock", "", "Task" },
.{ "*Allocator", "PTR_ALLOCATOR", "", "std.mem", "Allocator" },
.{ "IdtError!void", "ERROR_IDTERROR_RET_VOID", "idt_mock", "", "IdtError" },
.{ "Allocator.Error!*Task", "ERROR_ALLOCATOR_RET_PTRTASK", "", "", "" },
.{ "fn () callconv(.C) void", "FN_CCC_OVOID", "", "", "" },
.{ "fn () callconv(.Naked) void", "FN_CCNAKED_OVOID", "", "", "" },
.{ "fn () void", "FN_OVOID", "", "", "" },
.{ "fn () u16", "FN_OU16", "", "", "" },
.{ "fn () usize", "FN_OUSIZE", "", "", "" },
.{ "fn () GdtPtr", "FN_OGDTPTR", "", "", "" },
.{ "fn () IdtPtr", "FN_OIDTPTR", "", "", "" },
.{ "fn (u8) void", "FN_IU8_OVOID", "", "", "" },
.{ "fn (u8) bool", "FN_IU8_OBOOL", "", "", "" },
.{ "fn (u8, fn () callconv(.Naked) void) IdtError!void", "FN_IU8_IFNCCNAKEDOVOID_EIDTERROR_OVOID", "", "", "" },
.{ "fn (u16) void", "FN_IU16_OVOID", "", "", "" },
.{ "fn (u16) u8", "FN_IU16_OU8", "", "", "" },
.{ "fn (usize) bool", "FN_IUSIZE_OBOOL", "", "", "" },
.{ "fn (RtcRegister) u8", "FN_IRTCREGISTER_OU8", "", "", "" },
.{ "fn (IdtEntry) bool", "FN_IIDTENTRY_OBOOL", "idt_mock", "", "IdtEntry" },
.{ "fn (*const GdtPtr) void", "FN_IPTRCONSTGDTPTR_OVOID", "", "", "" },
.{ "fn (*const IdtPtr) void", "FN_IPTRCONSTIDTPTR_OVOID", "", "", "" },
.{ "fn (u4, u4) u8", "FN_IU4_IU4_OU8", "", "", "" },
.{ "fn (u8, u8) u16", "FN_IU8_IU8_OU16", "", "", "" },
.{ "fn (u16, u8) void", "FN_IU16_IU8_OVOID", "", "", "" },
.{ "fn (u16, u16) void", "FN_IU16_IU16_OVOID", "", "", "" },
.{ "fn (StatusRegister, bool) u8", "FN_ISTATUSREGISTER_IBOOL_OU8", "", "", "" },
.{ "fn (*Task, usize) void", "FN_IPTRTASK_IUSIZE_OVOID", "", "", "" },
.{ "fn (*Task, *Allocator) void", "FN_IPTRTASK_IPTRALLOCATOR_OVOID", "", "", "" },
.{ "fn (fn () void, *Allocator) Allocator.Error!*Task", "FN_IFNOVOID_IPTRALLOCATOR_EALLOCATOR_OPTRTASK", "", "", "" },
.{ "fn (StatusRegister, u8, bool) void", "FN_ISTATUSREGISTER_IU8_IBOOL_OVOID", "", "", "" },
};
// Create the imports
fn genImports() []const u8 {
@setEvalBranchQuota(types.len * types.len * 7);
comptime var str: []const u8 = "";
comptime var seen_imports: []const u8 = &[_]u8{};
comptime var seen_types: []const u8 = &[_]u8{};
inline for (types) |t| {
const has_import = !std.mem.eql(u8, t[2], "");
const seen = if (std.mem.indexOf(u8, seen_imports, t[2])) |_| true else false;
if (has_import and !seen) {
str = str ++ "const " ++ t[2] ++ " = @import(\"" ++ t[2] ++ ".zig\");\n";
seen_imports = seen_imports ++ t[2];
}
}
inline for (types) |t| {
const has_import = !std.mem.eql(u8, t[2], "");
const has_base = !std.mem.eql(u8, t[3], "");
const has_type = !std.mem.eql(u8, t[4], "");
const seen = if (std.mem.indexOf(u8, seen_types, t[4])) |_| true else false;
if (!seen and has_type and (has_import or has_base)) {
str = str ++ "const " ++ t[4] ++ " = ";
if (has_import) {
str = str ++ t[2] ++ ".";
}
if (has_base) {
str = str ++ t[3] ++ ".";
}
str = str ++ t[4] ++ ";\n";
seen_types = seen_types ++ t[4];
}
}
// Remove trailing new line
return str;
}
// Create the DataElementType
fn genDataElementType() []const u8 {
comptime var str: []const u8 = "const DataElementType = enum {\n";
inline for (types) |t| {
const spaces = " " ** 4;
str = str ++ spaces ++ t[1] ++ ",\n";
}
return str ++ "};\n";
}
// Create the DataElement
fn genDataElement() []const u8 {
comptime var str: []const u8 = "const DataElement = union(DataElementType) {\n";
inline for (types) |t| {
const spaces = " " ** 4;
str = str ++ spaces ++ t[1] ++ ": " ++ t[0] ++ ",\n";
}
return str ++ "};\n";
}
// All the function generation parts are the same apart from 3 things
fn genGenericFunc(comptime intermediate: []const u8, comptime trail: []const u8, comptime end: []const u8) []const u8 {
comptime var str: []const u8 = "";
inline for (types) |t, i| {
const spaces = if (i == 0) " " ** 4 else " " ** 16;
str = str ++ spaces ++ t[0] ++ intermediate ++ t[1] ++ trail;
}
return str ++ " " ** 16 ++ end;
}
// Create the createDataElement
fn genCreateDataElement() []const u8 {
return genGenericFunc(" => DataElement{ .", " = arg },\n", "else => @compileError(\"Type not supported: \" ++ @typeName(@TypeOf(arg))),");
}
// Create the getDataElementType
fn genGetDataElementType() []const u8 {
return genGenericFunc(" => DataElement.", ",\n", "else => @compileError(\"Type not supported: \" ++ @typeName(T)),");
}
// Create the getDataValue
fn genGetDataValue() []const u8 {
return genGenericFunc(" => element.", ",\n", "else => @compileError(\"Type not supported: \" ++ @typeName(T)),");
}
///
/// Generate the mocking framework file from the template file and the type.
///
/// Error: Allocator.Error || File.OpenError || File.WriteError || File.ReadError
/// Allocator.Error - If there wasn't enough memory for reading in the mocking template file.
/// File.OpenError - Error opening the mocking template and output file.
/// File.WriteError - Error writing to the output mocking file.
/// File.ReadError - Error reading the mocking template file.
///
pub fn main() (Allocator.Error || File.OpenError || File.WriteError || File.ReadError)!void {
// Create the file output mocking framework file
const mock_file = try std.fs.cwd().createFile("test/mock/kernel/mock_framework.zig", .{});
defer mock_file.close();
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer _ = gpa.deinit();
const allocator = &gpa.allocator;
// All the string
const imports_str = comptime genImports();
const data_element_type_str = comptime genDataElementType();
const data_element_str = comptime genDataElement();
const create_data_element_str = comptime genCreateDataElement();
const get_data_element_type_str = comptime genGetDataElementType();
const get_data_value_str = comptime genGetDataValue();
// Read the mock template file
const mock_template = try std.fs.cwd().openFile("test/mock/kernel/mock_framework_template.zig", .{});
defer mock_template.close();
const mock_framework_str = try mock_template.readToEndAlloc(allocator, 1024 * 1024 * 1024);
defer allocator.free(mock_framework_str);
// The index where to write the templates
const imports_delimiter = "////Imports////";
const imports_index = (std.mem.indexOf(u8, mock_framework_str, imports_delimiter) orelse unreachable);
const data_element_type_delimiter = "////DataElementType////";
const data_element_type_index = (std.mem.indexOf(u8, mock_framework_str, data_element_type_delimiter) orelse unreachable);
const data_element_delimiter = "////DataElement////";
const data_element_index = (std.mem.indexOf(u8, mock_framework_str, data_element_delimiter) orelse unreachable);
const create_data_elem_delimiter = "////createDataElement////";
const create_data_elem_index = (std.mem.indexOf(u8, mock_framework_str, create_data_elem_delimiter) orelse unreachable);
const get_data_elem_type_delimiter = "////getDataElementType////";
const get_data_elem_type_index = (std.mem.indexOf(u8, mock_framework_str, get_data_elem_type_delimiter) orelse unreachable);
const get_data_value_delimiter = "////getDataValue////";
const get_data_value_index = (std.mem.indexOf(u8, mock_framework_str, get_data_value_delimiter) orelse unreachable);
// Write the beginning of the file
try mock_file.writer().writeAll(mock_framework_str[0..imports_index]);
// Write the Imports
try mock_file.writer().writeAll(imports_str);
// Write the up to DataElementType
try mock_file.writer().writeAll(mock_framework_str[imports_index + imports_delimiter.len .. data_element_type_index]);
// Write the DataElementType
try mock_file.writer().writeAll(data_element_type_str);
// Write the up to DataElement
try mock_file.writer().writeAll(mock_framework_str[data_element_type_index + data_element_type_delimiter.len .. data_element_index]);
// Write the DataElement
try mock_file.writer().writeAll(data_element_str);
// Write the up to createDataElement
try mock_file.writer().writeAll(mock_framework_str[data_element_index + data_element_delimiter.len .. create_data_elem_index]);
// Write the createDataElement
try mock_file.writer().writeAll(create_data_element_str);
// Write the up to getDataElementType
try mock_file.writer().writeAll(mock_framework_str[create_data_elem_index + create_data_elem_delimiter.len .. get_data_elem_type_index]);
// Write the getDataElementType
try mock_file.writer().writeAll(get_data_element_type_str);
// Write the up to getDataValue
try mock_file.writer().writeAll(mock_framework_str[get_data_elem_type_index + get_data_elem_type_delimiter.len .. get_data_value_index]);
// Write the getDataValue
try mock_file.writer().writeAll(get_data_value_str);
// Write the rest of the file
try mock_file.writer().writeAll(mock_framework_str[get_data_value_index + get_data_value_delimiter.len ..]);
}

View file

@ -4,14 +4,22 @@ const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual; const expectEqual = std.testing.expectEqual;
const GlobalAllocator = std.testing.allocator; const GlobalAllocator = std.testing.allocator;
const TailQueue = std.TailQueue; const TailQueue = std.TailQueue;
const gdt = @import("gdt_mock.zig"); const cmos_mock = @import("cmos_mock.zig");
const idt = @import("idt_mock.zig"); const idt_mock = @import("idt_mock.zig");
const cmos = @import("cmos_mock.zig"); const gdt_mock = @import("gdt_mock.zig");
const task = @import("task_mock.zig"); const task_mock = @import("task_mock.zig");
const StatusRegister = cmos_mock.StatusRegister;
const RtcRegister = cmos_mock.RtcRegister;
const IdtPtr = idt_mock.IdtPtr;
const GdtPtr = gdt_mock.GdtPtr;
const Task = task_mock.Task;
const Allocator = std.mem.Allocator;
const IdtError = idt_mock.IdtError;
const IdtEntry = idt_mock.IdtEntry;
/// ///
/// The enumeration of types that the mocking framework supports. These include basic types like u8 /// The enumeration of types that the mocking framework supports. These include basic types like u8
/// and function types like fn () void /// and function types like fn () void.
/// ///
const DataElementType = enum { const DataElementType = enum {
BOOL, BOOL,
@ -20,45 +28,41 @@ const DataElementType = enum {
U16, U16,
U32, U32,
USIZE, USIZE,
PTR_ALLOCATOR, STATUSREGISTER,
ECMOSSTATUSREGISTER, RTCREGISTER,
ECMOSRTCREGISTER,
GDTPTR,
IDTPTR, IDTPTR,
IDTENTRY,
PTR_CONST_GDTPTR, PTR_CONST_GDTPTR,
PTR_CONST_IDTPTR, PTR_CONST_IDTPTR,
ERROR_IDTERROR_VOID,
ERROR_MEM_PTRTASK,
PTR_TASK, PTR_TASK,
EFN_OVOID, PTR_ALLOCATOR,
NFN_OVOID, ERROR_IDTERROR_RET_VOID,
ERROR_ALLOCATOR_RET_PTRTASK,
FN_CCC_OVOID,
FN_CCNAKED_OVOID,
FN_OVOID, FN_OVOID,
FN_OUSIZE,
FN_OU16, FN_OU16,
FN_IU8_OBOOL, FN_OUSIZE,
FN_OGDTPTR,
FN_OIDTPTR,
FN_IU8_OVOID, FN_IU8_OVOID,
FN_IU8_OBOOL,
FN_IU8_IFNCCNAKEDOVOID_EIDTERROR_OVOID,
FN_IU16_OVOID, FN_IU16_OVOID,
FN_IUSIZE_OVOID,
FN_IU16_OU8, FN_IU16_OU8,
FN_IUSIZE_OBOOL,
FN_IRTCREGISTER_OU8,
FN_IIDTENTRY_OBOOL,
FN_IPTRCONSTGDTPTR_OVOID,
FN_IPTRCONSTIDTPTR_OVOID,
FN_IU4_IU4_OU8, FN_IU4_IU4_OU8,
FN_IU8_IU8_OU16, FN_IU8_IU8_OU16,
FN_IU16_IU8_OVOID, FN_IU16_IU8_OVOID,
FN_IU16_IU16_OVOID, FN_IU16_IU16_OVOID,
FN_IECMOSSTATUSREGISTER_IBOOL_OU8, FN_ISTATUSREGISTER_IBOOL_OU8,
FN_IECMOSSTATUSREGISTER_IU8_IBOOL_OVOID, FN_IPTRTASK_IUSIZE_OVOID,
FN_IECMOSRTCREGISTER_OU8,
FN_IU8_IEFNOVOID_OERRORIDTERRORVOID,
FN_IU8_INFNOVOID_OERRORIDTERRORVOID,
FN_IPTRCONSTGDTPTR_OVOID,
FN_IPTRCONSTIDTPTR_OVOID,
FN_OGDTPTR,
FN_OIDTPTR,
FN_IIDTENTRY_OBOOL,
FN_IPTRTask_IUSIZE_OVOID,
FN_IPTRTASK_IPTRALLOCATOR_OVOID, FN_IPTRTASK_IPTRALLOCATOR_OVOID,
FN_IFNOVOID_OMEMERRORPTRTASK, FN_IFNOVOID_IPTRALLOCATOR_EALLOCATOR_OPTRTASK,
FN_IFNOVOID_IPTRALLOCATOR_OMEMERRORPTRTASK, FN_ISTATUSREGISTER_IU8_IBOOL_OVOID,
}; };
/// ///
@ -76,45 +80,41 @@ const DataElement = union(DataElementType) {
U16: u16, U16: u16,
U32: u32, U32: u32,
USIZE: usize, USIZE: usize,
PTR_ALLOCATOR: *std.mem.Allocator, STATUSREGISTER: StatusRegister,
ECMOSSTATUSREGISTER: cmos.StatusRegister, RTCREGISTER: RtcRegister,
ECMOSRTCREGISTER: cmos.RtcRegister, IDTPTR: IdtPtr,
GDTPTR: gdt.GdtPtr, PTR_CONST_GDTPTR: *const GdtPtr,
IDTPTR: idt.IdtPtr, PTR_CONST_IDTPTR: *const IdtPtr,
IDTENTRY: idt.IdtEntry, PTR_TASK: *Task,
PTR_CONST_GDTPTR: *const gdt.GdtPtr, PTR_ALLOCATOR: *Allocator,
PTR_CONST_IDTPTR: *const idt.IdtPtr, ERROR_IDTERROR_RET_VOID: IdtError!void,
ERROR_IDTERROR_VOID: idt.IdtError!void, ERROR_ALLOCATOR_RET_PTRTASK: Allocator.Error!*Task,
ERROR_MEM_PTRTASK: std.mem.Allocator.Error!*task.Task, FN_CCC_OVOID: fn () callconv(.C) void,
PTR_TASK: *task.Task, FN_CCNAKED_OVOID: fn () callconv(.Naked) void,
EFN_OVOID: fn () callconv(.C) void,
NFN_OVOID: fn () callconv(.Naked) void,
FN_OVOID: fn () void, FN_OVOID: fn () void,
FN_OUSIZE: fn () usize,
FN_OU16: fn () u16, FN_OU16: fn () u16,
FN_IU8_OBOOL: fn (u8) bool, FN_OUSIZE: fn () usize,
FN_OGDTPTR: fn () GdtPtr,
FN_OIDTPTR: fn () IdtPtr,
FN_IU8_OVOID: fn (u8) void, FN_IU8_OVOID: fn (u8) void,
FN_IUSIZE_OVOID: fn (usize) void, FN_IU8_OBOOL: fn (u8) bool,
FN_IU8_IFNCCNAKEDOVOID_EIDTERROR_OVOID: fn (u8, fn () callconv(.Naked) void) IdtError!void,
FN_IU16_OVOID: fn (u16) void, FN_IU16_OVOID: fn (u16) void,
FN_IU16_OU8: fn (u16) u8, FN_IU16_OU8: fn (u16) u8,
FN_IUSIZE_OBOOL: fn (usize) bool,
FN_IRTCREGISTER_OU8: fn (RtcRegister) u8,
FN_IIDTENTRY_OBOOL: fn (IdtEntry) bool,
FN_IPTRCONSTGDTPTR_OVOID: fn (*const GdtPtr) void,
FN_IPTRCONSTIDTPTR_OVOID: fn (*const IdtPtr) void,
FN_IU4_IU4_OU8: fn (u4, u4) u8, FN_IU4_IU4_OU8: fn (u4, u4) u8,
FN_IU8_IU8_OU16: fn (u8, u8) u16, FN_IU8_IU8_OU16: fn (u8, u8) u16,
FN_IU16_IU8_OVOID: fn (u16, u8) void, FN_IU16_IU8_OVOID: fn (u16, u8) void,
FN_IU16_IU16_OVOID: fn (u16, u16) void, FN_IU16_IU16_OVOID: fn (u16, u16) void,
FN_IECMOSSTATUSREGISTER_IBOOL_OU8: fn (cmos.StatusRegister, bool) u8, FN_ISTATUSREGISTER_IBOOL_OU8: fn (StatusRegister, bool) u8,
FN_IECMOSSTATUSREGISTER_IU8_IBOOL_OVOID: fn (cmos.StatusRegister, u8, bool) void, FN_IPTRTASK_IUSIZE_OVOID: fn (*Task, usize) void,
FN_IECMOSRTCREGISTER_OU8: fn (cmos.RtcRegister) u8, FN_IPTRTASK_IPTRALLOCATOR_OVOID: fn (*Task, *Allocator) void,
FN_IU8_IEFNOVOID_OERRORIDTERRORVOID: fn (u8, fn () callconv(.C) void) idt.IdtError!void, FN_IFNOVOID_IPTRALLOCATOR_EALLOCATOR_OPTRTASK: fn (fn () void, *Allocator) Allocator.Error!*Task,
FN_IU8_INFNOVOID_OERRORIDTERRORVOID: fn (u8, fn () callconv(.Naked) void) idt.IdtError!void, FN_ISTATUSREGISTER_IU8_IBOOL_OVOID: fn (StatusRegister, u8, bool) void,
FN_IPTRCONSTGDTPTR_OVOID: fn (*const gdt.GdtPtr) void,
FN_IPTRCONSTIDTPTR_OVOID: fn (*const idt.IdtPtr) void,
FN_OGDTPTR: fn () gdt.GdtPtr,
FN_OIDTPTR: fn () idt.IdtPtr,
FN_IIDTENTRY_OBOOL: fn (idt.IdtEntry) bool,
FN_IPTRTask_IUSIZE_OVOID: fn (*task.Task, usize) void,
FN_IPTRTASK_IPTRALLOCATOR_OVOID: fn (*task.Task, *std.mem.Allocator) void,
FN_IFNOVOID_OMEMERRORPTRTASK: fn (fn () void) std.mem.Allocator.Error!*task.Task,
FN_IFNOVOID_IPTRALLOCATOR_OMEMERRORPTRTASK: fn (fn () void, *std.mem.Allocator) std.mem.Allocator.Error!*task.Task,
}; };
/// ///
@ -196,45 +196,41 @@ fn Mock() type {
u16 => DataElement{ .U16 = arg }, u16 => DataElement{ .U16 = arg },
u32 => DataElement{ .U32 = arg }, u32 => DataElement{ .U32 = arg },
usize => DataElement{ .USIZE = arg }, usize => DataElement{ .USIZE = arg },
*std.mem.Allocator => DataElement{ .PTR_ALLOCATOR = arg }, StatusRegister => DataElement{ .STATUSREGISTER = arg },
cmos.StatusRegister => DataElement{ .ECMOSSTATUSREGISTER = arg }, RtcRegister => DataElement{ .RTCREGISTER = arg },
cmos.RtcRegister => DataElement{ .ECMOSRTCREGISTER = arg }, IdtPtr => DataElement{ .IDTPTR = arg },
gdt.GdtPtr => DataElement{ .GDTPTR = arg }, *const GdtPtr => DataElement{ .PTR_CONST_GDTPTR = arg },
idt.IdtPtr => DataElement{ .IDTPTR = arg }, *const IdtPtr => DataElement{ .PTR_CONST_IDTPTR = arg },
idt.IdtEntry => DataElement{ .IDTENTRY = arg }, *Task => DataElement{ .PTR_TASK = arg },
*const gdt.GdtPtr => DataElement{ .PTR_CONST_GDTPTR = arg }, *Allocator => DataElement{ .PTR_ALLOCATOR = arg },
*const idt.IdtPtr => DataElement{ .PTR_CONST_IDTPTR = arg }, IdtError!void => DataElement{ .ERROR_IDTERROR_RET_VOID = arg },
idt.IdtError!void => DataElement{ .ERROR_IDTERROR_VOID = arg }, Allocator.Error!*Task => DataElement{ .ERROR_ALLOCATOR_RET_PTRTASK = arg },
std.mem.Allocator.Error!*task.Task => DataElement{ .ERROR_MEM_PTRTASK = arg }, fn () callconv(.C) void => DataElement{ .FN_CCC_OVOID = arg },
*task.Task => DataElement{ .PTR_TASK = arg }, fn () callconv(.Naked) void => DataElement{ .FN_CCNAKED_OVOID = arg },
fn () callconv(.C) void => DataElement{ .EFN_OVOID = arg },
fn () callconv(.Naked) void => DataElement{ .NFN_OVOID = arg },
fn () void => DataElement{ .FN_OVOID = arg }, fn () void => DataElement{ .FN_OVOID = arg },
fn () usize => DataElement{ .FN_OUSIZE = arg },
fn () u16 => DataElement{ .FN_OU16 = arg }, fn () u16 => DataElement{ .FN_OU16 = arg },
fn (u8) bool => DataElement{ .FN_IU8_OBOOL = arg }, fn () usize => DataElement{ .FN_OUSIZE = arg },
fn () GdtPtr => DataElement{ .FN_OGDTPTR = arg },
fn () IdtPtr => DataElement{ .FN_OIDTPTR = arg },
fn (u8) void => DataElement{ .FN_IU8_OVOID = arg }, fn (u8) void => DataElement{ .FN_IU8_OVOID = arg },
fn (usize) void => DataElement{ .FN_IUSIZE_OVOID = arg }, fn (u8) bool => DataElement{ .FN_IU8_OBOOL = arg },
fn (u8, fn () callconv(.Naked) void) IdtError!void => DataElement{ .FN_IU8_IFNCCNAKEDOVOID_EIDTERROR_OVOID = arg },
fn (u16) void => DataElement{ .FN_IU16_OVOID = arg }, fn (u16) void => DataElement{ .FN_IU16_OVOID = arg },
fn (u16) u8 => DataElement{ .FN_IU16_OU8 = arg }, fn (u16) u8 => DataElement{ .FN_IU16_OU8 = arg },
fn (usize) bool => DataElement{ .FN_IUSIZE_OBOOL = arg },
fn (RtcRegister) u8 => DataElement{ .FN_IRTCREGISTER_OU8 = arg },
fn (IdtEntry) bool => DataElement{ .FN_IIDTENTRY_OBOOL = arg },
fn (*const GdtPtr) void => DataElement{ .FN_IPTRCONSTGDTPTR_OVOID = arg },
fn (*const IdtPtr) void => DataElement{ .FN_IPTRCONSTIDTPTR_OVOID = arg },
fn (u4, u4) u8 => DataElement{ .FN_IU4_IU4_OU8 = arg }, fn (u4, u4) u8 => DataElement{ .FN_IU4_IU4_OU8 = arg },
fn (u8, u8) u16 => DataElement{ .FN_IU8_IU8_OU16 = arg }, fn (u8, u8) u16 => DataElement{ .FN_IU8_IU8_OU16 = arg },
fn (u16, u8) void => DataElement{ .FN_IU16_IU8_OVOID = arg }, fn (u16, u8) void => DataElement{ .FN_IU16_IU8_OVOID = arg },
fn (u16, u16) void => DataElement{ .FN_IU16_IU16_OVOID = arg }, fn (u16, u16) void => DataElement{ .FN_IU16_IU16_OVOID = arg },
fn (cmos.StatusRegister, bool) u8 => DataElement{ .FN_IECMOSSTATUSREGISTER_IBOOL_OU8 = arg }, fn (StatusRegister, bool) u8 => DataElement{ .FN_ISTATUSREGISTER_IBOOL_OU8 = arg },
fn (cmos.StatusRegister, u8, bool) void => DataElement{ .FN_IECMOSSTATUSREGISTER_IU8_IBOOL_OVOID = arg }, fn (*Task, usize) void => DataElement{ .FN_IPTRTASK_IUSIZE_OVOID = arg },
fn (cmos.RtcRegister) u8 => DataElement{ .FN_IECMOSRTCREGISTER_OU8 = arg }, fn (*Task, *Allocator) void => DataElement{ .FN_IPTRTASK_IPTRALLOCATOR_OVOID = arg },
fn (*const gdt.GdtPtr) void => DataElement{ .FN_IPTRCONSTGDTPTR_OVOID = arg }, fn (fn () void, *Allocator) Allocator.Error!*Task => DataElement{ .FN_IFNOVOID_IPTRALLOCATOR_EALLOCATOR_OPTRTASK = arg },
fn () gdt.GdtPtr => DataElement{ .FN_OGDTPTR = arg }, fn (StatusRegister, u8, bool) void => DataElement{ .FN_ISTATUSREGISTER_IU8_IBOOL_OVOID = arg },
fn (*const idt.IdtPtr) void => DataElement{ .FN_IPTRCONSTIDTPTR_OVOID = arg },
fn () idt.IdtPtr => DataElement{ .FN_OIDTPTR = arg },
fn (u8, fn () callconv(.C) void) idt.IdtError!void => DataElement{ .FN_IU8_IEFNOVOID_OERRORIDTERRORVOID = arg },
fn (u8, fn () callconv(.Naked) void) idt.IdtError!void => DataElement{ .FN_IU8_INFNOVOID_OERRORIDTERRORVOID = arg },
fn (idt.IdtEntry) bool => DataElement{ .FN_IIDTENTRY_OBOOL = arg },
fn (*task.Task, usize) void => DataElement{ .FN_IPTRTask_IUSIZE_OVOID = arg },
fn (*task.Task, *std.mem.Allocator) void => DataElement{ .FN_IPTRTASK_IPTRALLOCATOR_OVOID = arg },
fn (fn () void) std.mem.Allocator.Error!*task.Task => DataElement{ .FN_IFNOVOID_OMEMERRORPTRTASK = arg },
fn (fn () void, *std.mem.Allocator) std.mem.Allocator.Error!*task.Task => DataElement{ .FN_IFNOVOID_IPTRALLOCATOR_OMEMERRORPTRTASK = arg },
else => @compileError("Type not supported: " ++ @typeName(@TypeOf(arg))), else => @compileError("Type not supported: " ++ @typeName(@TypeOf(arg))),
}; };
} }
@ -250,51 +246,47 @@ fn Mock() type {
/// ///
fn getDataElementType(comptime T: type) DataElementType { fn getDataElementType(comptime T: type) DataElementType {
return switch (T) { return switch (T) {
bool => DataElementType.BOOL, bool => DataElement.BOOL,
u4 => DataElementType.U4, u4 => DataElement.U4,
u8 => DataElementType.U8, u8 => DataElement.U8,
u16 => DataElementType.U16, u16 => DataElement.U16,
u32 => DataElementType.U32, u32 => DataElement.U32,
usize => DataElementType.USIZE, usize => DataElement.USIZE,
*std.mem.Allocator => DataElementType.PTR_ALLOCATOR, StatusRegister => DataElement.STATUSREGISTER,
cmos.StatusRegister => DataElementType.ECMOSSTATUSREGISTER, RtcRegister => DataElement.RTCREGISTER,
cmos.RtcRegister => DataElementType.ECMOSRTCREGISTER, IdtPtr => DataElement.IDTPTR,
gdt.GdtPtr => DataElementType.GDTPTR, *const GdtPtr => DataElement.PTR_CONST_GDTPTR,
idt.IdtPtr => DataElementType.IDTPTR, *const IdtPtr => DataElement.PTR_CONST_IDTPTR,
idt.IdtEntry => DataElementType.IDTENTRY, *Task => DataElement.PTR_TASK,
*const gdt.GdtPtr => DataElementType.PTR_CONST_GDTPTR, *Allocator => DataElement.PTR_ALLOCATOR,
*const idt.IdtPtr => DataElementType.PTR_CONST_IDTPTR, IdtError!void => DataElement.ERROR_IDTERROR_RET_VOID,
idt.IdtError!void => DataElementType.ERROR_IDTERROR_VOID, Allocator.Error!*Task => DataElement.ERROR_ALLOCATOR_RET_PTRTASK,
std.mem.Allocator.Error!*task.Task => DataElementType.ERROR_MEM_PTRTASK, fn () callconv(.C) void => DataElement.FN_CCC_OVOID,
*task.Task => DataElementType.PTR_TASK, fn () callconv(.Naked) void => DataElement.FN_CCNAKED_OVOID,
fn () callconv(.C) void => DataElementType.EFN_OVOID, fn () void => DataElement.FN_OVOID,
fn () callconv(.Naked) void => DataElementType.NFN_OVOID, fn () u16 => DataElement.FN_OU16,
fn () void => DataElementType.FN_OVOID, fn () usize => DataElement.FN_OUSIZE,
fn () usize => DataElementType.FN_OUSIZE, fn () GdtPtr => DataElement.FN_OGDTPTR,
fn () u16 => DataElementType.FN_OU16, fn () IdtPtr => DataElement.FN_OIDTPTR,
fn (u8) bool => DataElementType.FN_IU8_OBOOL, fn (u8) void => DataElement.FN_IU8_OVOID,
fn (u8) void => DataElementType.FN_IU8_OVOID, fn (u8) bool => DataElement.FN_IU8_OBOOL,
fn (u16) void => DataElementType.FN_IU16_OVOID, fn (u8, fn () callconv(.Naked) void) IdtError!void => DataElement.FN_IU8_IFNCCNAKEDOVOID_EIDTERROR_OVOID,
fn (usize) void => DataElementType.FN_IUSIZE_OVOID, fn (u16) void => DataElement.FN_IU16_OVOID,
fn (u16) u8 => DataElementType.FN_IU16_OU8, fn (u16) u8 => DataElement.FN_IU16_OU8,
fn (u4, u4) u8 => DataElementType.FN_IU4_IU4_OU8, fn (usize) bool => DataElement.FN_IUSIZE_OBOOL,
fn (u8, u8) u16 => DataElementType.FN_IU8_IU8_OU16, fn (RtcRegister) u8 => DataElement.FN_IRTCREGISTER_OU8,
fn (u16, u8) void => DataElementType.FN_IU16_IU8_OVOID, fn (IdtEntry) bool => DataElement.FN_IIDTENTRY_OBOOL,
fn (u16, u16) void => DataElementType.FN_IU16_IU16_OVOID, fn (*const GdtPtr) void => DataElement.FN_IPTRCONSTGDTPTR_OVOID,
fn (cmos.StatusRegister, bool) u8 => DataElementType.FN_IECMOSSTATUSREGISTER_IBOOL_OU8, fn (*const IdtPtr) void => DataElement.FN_IPTRCONSTIDTPTR_OVOID,
fn (cmos.StatusRegister, u8, bool) void => DataElementType.FN_IECMOSSTATUSREGISTER_IU8_IBOOL_OVOID, fn (u4, u4) u8 => DataElement.FN_IU4_IU4_OU8,
fn (cmos.RtcRegister) u8 => DataElementType.FN_IECMOSRTCREGISTER_OU8, fn (u8, u8) u16 => DataElement.FN_IU8_IU8_OU16,
fn (*const gdt.GdtPtr) void => DataElementType.FN_IPTRCONSTGDTPTR_OVOID, fn (u16, u8) void => DataElement.FN_IU16_IU8_OVOID,
fn (*const idt.IdtPtr) void => DataElementType.FN_IPTRCONSTIDTPTR_OVOID, fn (u16, u16) void => DataElement.FN_IU16_IU16_OVOID,
fn () gdt.GdtPtr => DataElementType.FN_OGDTPTR, fn (StatusRegister, bool) u8 => DataElement.FN_ISTATUSREGISTER_IBOOL_OU8,
fn () idt.IdtPtr => DataElementType.FN_OIDTPTR, fn (*Task, usize) void => DataElement.FN_IPTRTASK_IUSIZE_OVOID,
fn (u8, fn () callconv(.C) void) idt.IdtError!void => DataElementType.FN_IU8_IEFNOVOID_OERRORIDTERRORVOID, fn (*Task, *Allocator) void => DataElement.FN_IPTRTASK_IPTRALLOCATOR_OVOID,
fn (u8, fn () callconv(.Naked) void) idt.IdtError!void => DataElementType.FN_IU8_INFNOVOID_OERRORIDTERRORVOID, fn (fn () void, *Allocator) Allocator.Error!*Task => DataElement.FN_IFNOVOID_IPTRALLOCATOR_EALLOCATOR_OPTRTASK,
fn (idt.IdtEntry) bool => DataElementType.FN_IIDTENTRY_OBOOL, fn (StatusRegister, u8, bool) void => DataElement.FN_ISTATUSREGISTER_IU8_IBOOL_OVOID,
fn (*task.Task, usize) void => DataElementType.FN_IPTRTask_IUSIZE_OVOID,
fn (*task.Task, *std.mem.Allocator) void => DataElementType.FN_IPTRTASK_IPTRALLOCATOR_OVOID,
fn (fn () void) std.mem.Allocator.Error!*task.Task => DataElementType.FN_IFNOVOID_OMEMERRORPTRTASK,
fn (fn () void, *std.mem.Allocator) std.mem.Allocator.Error!*task.Task => DataElementType.FN_IFNOVOID_IPTRALLOCATOR_OMEMERRORPTRTASK,
else => @compileError("Type not supported: " ++ @typeName(T)), else => @compileError("Type not supported: " ++ @typeName(T)),
}; };
} }
@ -318,45 +310,41 @@ fn Mock() type {
u16 => element.U16, u16 => element.U16,
u32 => element.U32, u32 => element.U32,
usize => element.USIZE, usize => element.USIZE,
*std.mem.Allocator => element.PTR_ALLOCATOR, StatusRegister => element.STATUSREGISTER,
cmos.StatusRegister => element.ECMOSSTATUSREGISTER, RtcRegister => element.RTCREGISTER,
gdt.GdtPtr => element.GDTPTR, IdtPtr => element.IDTPTR,
idt.IdtPtr => element.IDTPTR, *const GdtPtr => element.PTR_CONST_GDTPTR,
idt.IdtEntry => element.IDTENTRY, *const IdtPtr => element.PTR_CONST_IDTPTR,
cmos.RtcRegister => element.ECMOSRTCREGISTER, *Task => element.PTR_TASK,
*const gdt.GdtPtr => element.PTR_CONST_GDTPTR, *Allocator => element.PTR_ALLOCATOR,
*const idt.IdtPtr => element.PTR_CONST_IDTPTR, IdtError!void => element.ERROR_IDTERROR_RET_VOID,
idt.IdtError!void => element.ERROR_IDTERROR_VOID, Allocator.Error!*Task => element.ERROR_ALLOCATOR_RET_PTRTASK,
std.mem.Allocator.Error!*task.Task => element.ERROR_MEM_PTRTASK, fn () callconv(.C) void => element.FN_CCC_OVOID,
*task.Task => element.PTR_TASK, fn () callconv(.Naked) void => element.FN_CCNAKED_OVOID,
fn () callconv(.C) void => element.EFN_OVOID,
fn () callconv(.Naked) void => element.NFN_OVOID,
fn () void => element.FN_OVOID, fn () void => element.FN_OVOID,
fn () usize => element.FN_OUSIZE,
fn () u16 => element.FN_OU16, fn () u16 => element.FN_OU16,
fn (u8) bool => element.FN_IU8_OBOOL, fn () usize => element.FN_OUSIZE,
fn () GdtPtr => element.FN_OGDTPTR,
fn () IdtPtr => element.FN_OIDTPTR,
fn (u8) void => element.FN_IU8_OVOID, fn (u8) void => element.FN_IU8_OVOID,
fn (u8) bool => element.FN_IU8_OBOOL,
fn (u8, fn () callconv(.Naked) void) IdtError!void => element.FN_IU8_IFNCCNAKEDOVOID_EIDTERROR_OVOID,
fn (u16) void => element.FN_IU16_OVOID, fn (u16) void => element.FN_IU16_OVOID,
fn (usize) void => element.FN_IUSIZE_OVOID,
fn (u16) u8 => element.FN_IU16_OU8, fn (u16) u8 => element.FN_IU16_OU8,
fn (usize) bool => element.FN_IUSIZE_OBOOL,
fn (RtcRegister) u8 => element.FN_IRTCREGISTER_OU8,
fn (IdtEntry) bool => element.FN_IIDTENTRY_OBOOL,
fn (*const GdtPtr) void => element.FN_IPTRCONSTGDTPTR_OVOID,
fn (*const IdtPtr) void => element.FN_IPTRCONSTIDTPTR_OVOID,
fn (u4, u4) u8 => element.FN_IU4_IU4_OU8, fn (u4, u4) u8 => element.FN_IU4_IU4_OU8,
fn (u8, u8) u16 => element.FN_IU8_IU8_OU16, fn (u8, u8) u16 => element.FN_IU8_IU8_OU16,
fn (u16, u8) void => element.FN_IU16_IU8_OVOID, fn (u16, u8) void => element.FN_IU16_IU8_OVOID,
fn (u16, u16) void => element.FN_IU16_IU16_OVOID, fn (u16, u16) void => element.FN_IU16_IU16_OVOID,
fn (cmos.StatusRegister, bool) u8 => element.FN_IECMOSSTATUSREGISTER_IBOOL_OU8, fn (StatusRegister, bool) u8 => element.FN_ISTATUSREGISTER_IBOOL_OU8,
fn (cmos.StatusRegister, u8, bool) void => element.FN_IECMOSSTATUSREGISTER_IU8_IBOOL_OVOID, fn (*Task, usize) void => element.FN_IPTRTASK_IUSIZE_OVOID,
fn (cmos.RtcRegister) u8 => element.FN_IECMOSRTCREGISTER_OU8, fn (*Task, *Allocator) void => element.FN_IPTRTASK_IPTRALLOCATOR_OVOID,
fn (*const gdt.GdtPtr) void => element.FN_IPTRCONSTGDTPTR_OVOID, fn (fn () void, *Allocator) Allocator.Error!*Task => element.FN_IFNOVOID_IPTRALLOCATOR_EALLOCATOR_OPTRTASK,
fn (*const idt.IdtPtr) void => element.FN_IPTRCONSTIDTPTR_OVOID, fn (StatusRegister, u8, bool) void => element.FN_ISTATUSREGISTER_IU8_IBOOL_OVOID,
fn (u8, fn () callconv(.C) void) idt.IdtError!void => element.FN_IU8_IEFNOVOID_OERRORIDTERRORVOID,
fn (u8, fn () callconv(.Naked) void) idt.IdtError!void => element.FN_IU8_INFNOVOID_OERRORIDTERRORVOID,
fn () gdt.GdtPtr => element.FN_OGDTPTR,
fn () idt.IdtPtr => element.FN_OIDTPTR,
fn (idt.IdtEntry) bool => element.FN_IIDTENTRY_OBOOL,
fn (*task.Task, usize) void => element.FN_IPTRTask_IUSIZE_OVOID,
fn (*task.Task, *std.mem.Allocator) void => element.FN_IPTRTASK_IPTRALLOCATOR_OVOID,
fn (fn () void) std.mem.Allocator.Error!*task.Task => element.FN_IFNOVOID_OMEMERRORPTRTASK,
fn (fn () void, *std.mem.Allocator) std.mem.Allocator.Error!*task.Task => element.FN_IFNOVOID_IPTRALLOCATOR_OMEMERRORPTRTASK,
else => @compileError("Type not supported: " ++ @typeName(T)), else => @compileError("Type not supported: " ++ @typeName(T)),
}; };
} }

View file

@ -0,0 +1,504 @@
const std = @import("std");
const StringHashMap = std.StringHashMap;
const expect = std.testing.expect;
const expectEqual = std.testing.expectEqual;
const GlobalAllocator = std.testing.allocator;
const TailQueue = std.TailQueue;
////Imports////
///
/// The enumeration of types that the mocking framework supports. These include basic types like u8
/// and function types like fn () void.
///
////DataElementType////
///
/// A tagged union of all the data elements that the mocking framework can work with. This can be
/// expanded to add new types. This is needed as need a list of data that all have different types,
/// so this wraps the data into a union, (which is of one type) so can have a list of them.
/// When https://github.com/ziglang/zig/issues/383 and https://github.com/ziglang/zig/issues/2907
/// is done, can programitaclly create types for this. Can use a compile time block that loops
/// through the available basic types and create function types so don't have a long list.
///
////DataElement////
///
/// The type of actions that the mocking framework can perform.
///
const ActionType = enum {
/// This will test the parameters passed to a function. It will test the correct types and
/// value of each parameter. This is also used to return a specific value from a function so
/// can test for returns from a function.
TestValue,
/// This action is to replace a function call to be mocked with another function the user
/// chooses to be replaced. This will consume the function call. This will allow the user to
/// check that the function is called once or multiple times by added a function to be mocked
/// multiple times. This also allows the ability for a function to be mocked by different
/// functions each time it is called.
ConsumeFunctionCall,
/// This is similar to the ConsumeFunctionCall action, but will call the mocked function
/// repeatedly until the mocking is done.
RepeatFunctionCall,
// Other actions that could be used
// This will check that a function isn't called.
//NoFunctionCall
// This is a generalisation of ConsumeFunctionCall and RepeatFunctionCall but can specify how
// many times a function can be called.
//FunctionCallN
};
///
/// This is a pair of action and data to be actioned on.
///
const Action = struct {
action: ActionType,
data: DataElement,
};
///
/// The type for a queue of actions using std.TailQueue.
///
const ActionList = TailQueue(Action);
///
/// The type for linking the function name to be mocked and the action list to be acted on.
///
const NamedActionMap = StringHashMap(ActionList);
///
/// The mocking framework.
///
/// Return: type
/// This returns a struct for adding and acting on mocked functions.
///
fn Mock() type {
return struct {
const Self = @This();
/// The map of function name and action list.
named_actions: NamedActionMap,
///
/// Create a DataElement from data. This wraps data into a union. This allows the ability
/// to have a list of different types.
///
/// Arguments:
/// IN arg: anytype - The data, this can be a function or basic type value.
///
/// Return: DataElement
/// A DataElement with the data wrapped.
///
fn createDataElement(arg: anytype) DataElement {
return switch (@TypeOf(arg)) {
////createDataElement////
};
}
///
/// Get the enum that represents the type given.
///
/// Arguments:
/// IN comptime T: type - A type.
///
/// Return: DataElementType
/// The DataElementType that represents the type given.
///
fn getDataElementType(comptime T: type) DataElementType {
return switch (T) {
////getDataElementType////
};
}
///
/// Get the data out of the tagged union
///
/// Arguments:
/// IN comptime T: type - The type of the data to extract. Used to switch on the
/// tagged union.
/// IN element: DataElement - The data element to unwrap the data from.
///
/// Return: T
/// The data of type T from the DataElement.
///
fn getDataValue(comptime T: type, element: DataElement) T {
return switch (T) {
////getDataValue////
};
}
///
/// Create a function type from a return type and its arguments.
///
/// Arguments:
/// IN comptime RetType: type - The return type of the function.
/// IN params: type - The parameters of the function. This will be the type
/// of a anonymous struct to get the fields and types.
///
/// Return: type
/// A function type that represents the return type and its arguments.
///
fn getFunctionType(comptime RetType: type, params: type) type {
const fields = @typeInfo(params).Struct.fields;
return switch (fields.len) {
0 => fn () RetType,
1 => fn (fields[0].field_type) RetType,
2 => fn (fields[0].field_type, fields[1].field_type) RetType,
3 => fn (fields[0].field_type, fields[1].field_type, fields[2].field_type) RetType,
else => @compileError("More than 3 parameters not supported"),
};
}
///
/// Call a function with the function definitions and parameters.
///
/// Argument:
/// IN comptime RetType: type - The return type of the function.
/// IN function_type: anytype - The function pointer to call.
/// IN params: anytype - The parameter(s) of the function.
///
/// Return: RetType
/// The return value of the called function. This can be void.
///
fn callFunction(comptime RetType: type, function_type: anytype, params: anytype) RetType {
return switch (params.len) {
0 => function_type(),
1 => function_type(params[0]),
2 => function_type(params[0], params[1]),
3 => function_type(params[0], params[1], params[2]),
// Should get to this as `getFunctionType` will catch this
else => @compileError("More than 3 parameters not supported"),
};
}
///
/// Perform a generic function action. This can be part of a ConsumeFunctionCall or
/// RepeatFunctionCall action. This will perform the function type comparison and
/// call the function stored in the action list.
///
/// Argument:
/// IN comptime RetType: type - The return type of the function to call.
/// IN test_element: DataElement - The test value to compare to the generated function
/// type. This is also the function that will be called.
/// IN params: anytype - The parameters of the function to call.
///
/// Return: RetType
/// The return value of the called function. This can be void.
///
fn performGenericFunction(comptime RetType: type, test_element: DataElement, params: anytype) RetType {
// Get the expected function type
const expected_function = getFunctionType(RetType, @TypeOf(params));
// Test that the types match
const expect_type = comptime getDataElementType(expected_function);
expectEqual(expect_type, @as(DataElementType, test_element));
// Types match, so can use the expected type to get the actual data
const actual_function = getDataValue(expected_function, test_element);
return callFunction(RetType, actual_function, params);
}
///
/// This tests a value passed to a function.
///
/// Arguments:
/// IN comptime ExpectedType: type - The expected type of the value to be tested.
/// IN expected_value: ExpectedType - The expected value to be tested. This is what was
/// passed to the functions.
/// IN elem: DataElement - The wrapped data element to test against the
/// expected value.
///
fn expectTest(comptime ExpectedType: type, expected_value: ExpectedType, elem: DataElement) void {
if (ExpectedType == void) {
// Can't test void as it has no value
std.debug.panic("Can not test a value for void\n", .{});
}
// Test that the types match
const expect_type = comptime getDataElementType(ExpectedType);
expectEqual(expect_type, @as(DataElementType, elem));
// Types match, so can use the expected type to get the actual data
const actual_value = getDataValue(ExpectedType, elem);
// Test the values
expectEqual(expected_value, actual_value);
}
///
/// This returns a value from the wrapped data element. This will be a test value to be
/// returned by a mocked function.
///
/// Arguments:
/// IN comptime fun_name: []const u8 - The function name to be used to tell the user if
/// there is no return value set up.
/// IN/OUT action_list: *ActionList - The action list to extract the return value from.
/// IN comptime DataType: type - The type of the return value.
///
/// Return: RetType
/// The return value of the expected value.
///
fn expectGetValue(comptime fun_name: []const u8, action_list: *ActionList, comptime DataType: type) DataType {
if (DataType == void) {
return;
}
if (action_list.*.popFirst()) |action_node| {
// Free the node
defer GlobalAllocator.destroy(action_node);
const action = action_node.data;
// Test that the data match
const expect_data = comptime getDataElementType(DataType);
expectEqual(expect_data, @as(DataElementType, action.data));
return getDataValue(DataType, action.data);
} else {
std.debug.panic("No more test values for the return of function: " ++ fun_name ++ "\n", .{});
}
}
///
/// This adds a action to the action list with ActionType provided. It will create a new
/// mapping if one doesn't exist for a function name.
///
/// Arguments:
/// IN/OUT self: *Self - Self. This is the mocking object to be modified
/// to add the test data.
/// IN comptime fun_name: []const u8 - The function name to add the test data to.
/// IN data: anytype - The data to add to the action for the function.
/// IN action_type: ActionType - The action type to add.
///
pub fn addAction(self: *Self, comptime fun_name: []const u8, data: anytype, action_type: ActionType) void {
// Add a new mapping if one doesn't exist.
if (!self.named_actions.contains(fun_name)) {
self.named_actions.put(fun_name, .{}) catch unreachable;
}
// Get the function mapping to add the parameter to.
if (self.named_actions.getEntry(fun_name)) |actions_kv| {
// Take a reference of the value so the underlying action list will update
var action_list = &actions_kv.value;
const action = Action{
.action = action_type,
.data = createDataElement(data),
};
var a = GlobalAllocator.create(TailQueue(Action).Node) catch unreachable;
a.* = .{ .data = action };
action_list.*.append(a);
} else {
// Shouldn't get here as we would have just added a new mapping
// But just in case ;)
std.debug.panic("No function name: " ++ fun_name ++ "\n", .{});
}
}
///
/// Perform an action on a function. This can be one of ActionType.
///
/// Arguments:
/// IN/OUT self: *Self - Self. This is the mocking object to be modified
/// to perform a action.
/// IN comptime fun_name: []const u8 - The function name to act on.
/// IN comptime RetType: type - The return type of the function being mocked.
/// IN params: anytype - The list of parameters of the mocked function.
///
/// Return: RetType
/// The return value of the mocked function. This can be void.
///
pub fn performAction(self: *Self, comptime fun_name: []const u8, comptime RetType: type, params: anytype) RetType {
if (self.named_actions.getEntry(fun_name)) |kv_actions_list| {
// Take a reference of the value so the underlying action list will update
var action_list = &kv_actions_list.value;
// Peak the first action to test the action type
if (action_list.*.first) |action_node| {
const action = action_node.data;
return switch (action.action) {
ActionType.TestValue => ret: {
comptime var i = 0;
inline while (i < params.len) : (i += 1) {
// Now pop the action as we are going to use it
// Have already checked that it is not null
const test_node = action_list.*.popFirst().?;
defer GlobalAllocator.destroy(test_node);
const test_action = test_node.data;
const param = params[i];
const param_type = @TypeOf(params[i]);
expectTest(param_type, param, test_action.data);
}
break :ret expectGetValue(fun_name, action_list, RetType);
},
ActionType.ConsumeFunctionCall => ret: {
// Now pop the action as we are going to use it
// Have already checked that it is not null
const test_node = action_list.*.popFirst().?;
// Free the node once done
defer GlobalAllocator.destroy(test_node);
const test_element = test_node.data.data;
break :ret performGenericFunction(RetType, test_element, params);
},
ActionType.RepeatFunctionCall => ret: {
// Do the same for ActionType.ConsumeFunctionCall but instead of
// popping the function, just peak
const test_element = action.data;
break :ret performGenericFunction(RetType, test_element, params);
},
};
} else {
std.debug.panic("No action list elements for function: " ++ fun_name ++ "\n", .{});
}
} else {
std.debug.panic("No function name: " ++ fun_name ++ "\n", .{});
}
}
///
/// Initialise the mocking framework.
///
/// Return: Self
/// An initialised mocking framework.
///
pub fn init() Self {
return Self{
.named_actions = StringHashMap(ActionList).init(GlobalAllocator),
};
}
///
/// End the mocking session. This will check all test parameters and consume functions are
/// consumed. Any repeat functions are deinit.
///
/// Arguments:
/// IN/OUT self: *Self - Self. This is the mocking object to be modified to finished
/// the mocking session.
///
pub fn finish(self: *Self) void {
// Make sure the expected list is empty
var it = self.named_actions.iterator();
while (it.next()) |next| {
// Take a reference so the underlying action list will be updated.
var action_list = &next.value;
if (action_list.*.popFirst()) |action_node| {
const action = action_node.data;
switch (action.action) {
ActionType.TestValue, ActionType.ConsumeFunctionCall => {
// These need to be all consumed
std.debug.panic("Unused testing value: Type: {}, value: {} for function '{}'\n", .{ action.action, @as(DataElementType, action.data), next.key });
},
ActionType.RepeatFunctionCall => {
// As this is a repeat action, the function will still be here
// So need to free it
GlobalAllocator.destroy(action_node);
},
}
}
}
// Free the function mapping
self.named_actions.deinit();
}
};
}
/// The global mocking object that is used for a mocking session. Maybe in the future, we can have
/// local mocking objects so can run the tests in parallel.
var mock: ?Mock() = null;
///
/// Get the mocking object and check we have one initialised.
///
/// Return: *Mock()
/// Pointer to the global mocking object so can be modified.
///
fn getMockObject() *Mock() {
// Make sure we have a mock object
if (mock) |*m| {
return m;
} else {
std.debug.panic("MOCK object doesn't exists, please initialise this test\n", .{});
}
}
///
/// Initialise the mocking framework.
///
pub fn initTest() void {
// Make sure there isn't a mock object
if (mock) |_| {
std.debug.panic("MOCK object already exists, please free previous test\n", .{});
} else {
mock = Mock().init();
}
}
///
/// End the mocking session. This will check all test parameters and consume functions are
/// consumed. Any repeat functions are deinit.
///
pub fn freeTest() void {
getMockObject().finish();
// This will stop double frees
mock = null;
}
///
/// Add a list of test parameters to the action list. This will create a list of data
/// elements that represent the list of parameters that will be passed to a mocked
/// function. A mocked function may be called multiple times, so this list may contain
/// multiple values for each call to the same mocked function.
///
/// Arguments:
/// IN comptime fun_name: []const u8 - The function name to add the test parameters to.
/// IN params: anytype - The parameters to add.
///
pub fn addTestParams(comptime fun_name: []const u8, params: anytype) void {
var mock_obj = getMockObject();
comptime var i = 0;
inline while (i < params.len) : (i += 1) {
mock_obj.addAction(fun_name, params[i], ActionType.TestValue);
}
}
///
/// Add a function to mock out another. This will add a consume function action, so once
/// the mocked function is called, this action wil be removed.
///
/// Arguments:
/// IN comptime fun_name: []const u8 - The function name to add the function to.
/// IN function: anytype - The function to add.
///
pub fn addConsumeFunction(comptime fun_name: []const u8, function: anytype) void {
getMockObject().addAction(fun_name, function, ActionType.ConsumeFunctionCall);
}
///
/// Add a function to mock out another. This will add a repeat function action, so once
/// the mocked function is called, this action wil be removed.
///
/// Arguments:
/// IN comptime fun_name: []const u8 - The function name to add the function to.
/// IN function: anytype - The function to add.
///
pub fn addRepeatFunction(comptime fun_name: []const u8, function: anytype) void {
getMockObject().addAction(fun_name, function, ActionType.RepeatFunctionCall);
}
///
/// Perform an action on a function. This can be one of ActionType.
///
/// Arguments:
/// IN comptime fun_name: []const u8 - The function name to act on.
/// IN comptime RetType: type - The return type of the function being mocked.
/// IN params: anytype - The list of parameters of the mocked function.
///
/// Return: RetType
/// The return value of the mocked function. This can be void.
///
pub fn performAction(comptime fun_name: []const u8, comptime RetType: type, params: anytype) RetType {
return getMockObject().performAction(fun_name, RetType, params);
}