Merge pull request #104 from SamTebbs33/feature/phys-mem-manager

Add physical memory manager
This commit is contained in:
Sam Tebbs 2020-01-09 12:50:03 +00:00 committed by GitHub
commit a095fd3947
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 567 additions and 7 deletions

View file

@ -11,6 +11,7 @@ const paging = @import("paging.zig");
const syscalls = @import("syscalls.zig"); const syscalls = @import("syscalls.zig");
const mem = @import("../../mem.zig"); const mem = @import("../../mem.zig");
const multiboot = @import("../../multiboot.zig"); const multiboot = @import("../../multiboot.zig");
const pmm = @import("pmm.zig");
const MemProfile = mem.MemProfile; const MemProfile = mem.MemProfile;
/// The interrupt context that is given to a interrupt handler. It contains most of the registers /// The interrupt context that is given to a interrupt handler. It contains most of the registers
@ -46,6 +47,9 @@ pub const InterruptContext = struct {
ss: u32, ss: u32,
}; };
/// The size of each allocatable block of memory, normally set to the page size.
pub const MEMORY_BLOCK_SIZE = paging.PAGE_SIZE_4KB;
/// ///
/// Assembly to write to a given port with a byte of data. /// Assembly to write to a given port with a byte of data.
/// ///

View file

@ -83,12 +83,6 @@ const ENTRIES_PER_DIRECTORY: u32 = 1024;
/// Each table has 1024 entries /// Each table has 1024 entries
const ENTRIES_PER_TABLE: u32 = 1024; const ENTRIES_PER_TABLE: u32 = 1024;
/// The number of bytes in 4MB
const PAGE_SIZE_4MB: u32 = 0x400000;
/// The number of bytes in 4KB
const PAGE_SIZE_4KB: u32 = PAGE_SIZE_4MB / 1024;
/// There are 1024 entries per directory with each one covering 4KB /// There are 1024 entries per directory with each one covering 4KB
const PAGES_PER_DIR_ENTRY: u32 = 1024; const PAGES_PER_DIR_ENTRY: u32 = 1024;
@ -121,6 +115,12 @@ const TENTRY_GLOBAL: u32 = 0x100;
const TENTRY_AVAILABLE: u32 = 0xE00; const TENTRY_AVAILABLE: u32 = 0xE00;
const TENTRY_PAGE_ADDR: u32 = 0xFFFFF000; const TENTRY_PAGE_ADDR: u32 = 0xFFFFF000;
/// The number of bytes in 4MB
pub const PAGE_SIZE_4MB: u32 = 0x400000;
/// The number of bytes in 4KB
pub const PAGE_SIZE_4KB: u32 = PAGE_SIZE_4MB / 1024;
/// ///
/// Convert a virtual address to an index within an array of directory entries. /// Convert a virtual address to an index within an array of directory entries.
/// ///

306
src/kernel/bitmap.zig Normal file
View file

@ -0,0 +1,306 @@
const std = @import("std");
const builtin = @import("builtin");
const testing = std.testing;
///
/// A bitmap that uses a specific type to store the entries.
///
/// Arguments:
/// IN BitmapType: type - The integer type to use to store entries.
///
/// Return: type.
/// The bitmap type created.
///
pub fn Bitmap(comptime BitmapType: type) type {
return struct {
/// The possible errors thrown by bitmap functions
pub const BitmapError = error{
/// The address given was outside the region covered by a bitmap
OutOfBounds,
};
const Self = @This();
/// The number of entries that one bitmap type can hold. Evaluates to the number of bits the type has
pub const ENTRIES_PER_BITMAP: u32 = std.meta.bitCount(BitmapType);
/// The value that a full bitmap will have
pub const BITMAP_FULL = std.math.maxInt(BitmapType);
/// The type of an index into a bitmap entry. The smallest integer needed to represent all bit positions in the bitmap entry type
pub const IndexType = @Type(builtin.TypeInfo{ .Int = builtin.TypeInfo.Int{ .is_signed = false, .bits = std.math.log2(std.meta.bitCount(BitmapType)) } });
num_bitmaps: u32,
num_entries: u32,
bitmaps: []BitmapType,
num_free_entries: u32,
///
/// Create an instance of this bitmap type.
///
/// Arguments:
/// IN num_entries: u32 - The number of entries that the bitmap created will have.
/// The number of BitmapType required to store this many entries will be allocated and each will be zeroed.
/// IN allocator: *std.mem.Allocator - The allocator to use when allocating the BitmapTypes required.
///
/// Return: Self.
/// The bitmap instance.
///
/// Error: std.mem.Allocator.Error
/// OutOfMemory: There isn't enough memory available to allocate the required number of BitmapType.
///
pub fn init(num_entries: u32, allocator: *std.mem.Allocator) !Self {
const num = @floatToInt(u32, @ceil(@intToFloat(f32, num_entries) / @intToFloat(f32, ENTRIES_PER_BITMAP)));
const self = Self{
.num_bitmaps = num,
.num_entries = num_entries,
.bitmaps = try allocator.alloc(BitmapType, num),
.num_free_entries = num_entries,
};
for (self.bitmaps) |*bmp| {
bmp.* = 0;
}
return self;
}
///
/// Set an entry within a bitmap as occupied.
///
/// Arguments:
/// INOUT self: *Self - The bitmap to modify.
/// IN idx: BitmapIndex - The index within the bitmap to set.
///
/// Error: BitmapError.
/// OutOfBounds: The index given is out of bounds.
///
pub fn setEntry(self: *Self, idx: u32) BitmapError!void {
if (idx >= self.num_entries) return BitmapError.OutOfBounds;
if (!try self.isSet(idx)) {
const bit = self.indexToBit(idx);
self.bitmaps[idx / ENTRIES_PER_BITMAP] |= bit;
self.num_free_entries -= 1;
}
}
///
/// Set an entry within a bitmap as unoccupied.
///
/// Arguments:
/// INOUT self: *Self - The bitmap to modify.
/// IN idx: BitmapIndex - The index within the bitmap to clear.
///
/// Error: BitmapError.
/// OutOfBounds: The index given is out of bounds.
///
pub fn clearEntry(self: *Self, idx: u32) BitmapError!void {
if (idx >= self.num_entries) return BitmapError.OutOfBounds;
if (try self.isSet(idx)) {
const bit = self.indexToBit(idx);
self.bitmaps[idx / ENTRIES_PER_BITMAP] &= ~bit;
self.num_free_entries += 1;
}
}
///
/// Convert a global bitmap index into the bit corresponding to an entry within a single BitmapType.
///
/// Arguments:
/// IN self: *Self - The bitmap to use.
/// IN idx: u32 - The index into all of the bitmap's entries.
///
/// Return: BitmapType.
/// The bit corresponding to that index but within a single BitmapType.
///
fn indexToBit(self: *Self, idx: u32) BitmapType {
return @as(BitmapType, 1) << @intCast(IndexType, idx % ENTRIES_PER_BITMAP);
}
///
/// Set the first free entry within the bitmaps as occupied.
///
/// Return: ?u32.
/// The index within all bitmaps that was set or null if there wasn't one free.
/// 0 .. ENTRIES_PER_BITMAP - 1 if in the first bitmap, ENTRIES_PER_BITMAP .. ENTRIES_PER_BITMAP * 2 - 1 if in the second etc.
///
pub fn setFirstFree(self: *Self) ?u32 {
if (self.num_free_entries == 0) return null;
for (self.bitmaps) |*bmp, i| {
if (bmp.* == BITMAP_FULL)
continue;
const bit = @truncate(IndexType, @ctz(BitmapType, ~bmp.*));
const idx = bit + @intCast(u32, i) * ENTRIES_PER_BITMAP;
// Failing here means that the index is outside of the bitmap, so there are no free entries
self.setEntry(idx) catch return null;
return idx;
}
return null;
}
///
/// Check if an entry is set.
///
/// Arguments:
/// IN self: *Bitmap - The bitmap to check.
/// IN idx: u32 - The entry to check.
///
/// Return: bool.
/// True if the entry is set, else false.
///
/// Error: BitmapError.
/// OutOfBounds: The index given is out of bounds.
///
pub fn isSet(self: *Self, idx: u32) BitmapError!bool {
if (idx >= self.num_entries) return BitmapError.OutOfBounds;
return (self.bitmaps[idx / ENTRIES_PER_BITMAP] & self.indexToBit(idx)) != 0;
}
};
}
test "setEntry" {
var bmp = try Bitmap(u32).init(31, std.heap.direct_allocator);
testing.expectEqual(@as(u32, 31), bmp.num_free_entries);
try bmp.setEntry(0);
testing.expectEqual(@as(u32, 1), bmp.bitmaps[0]);
testing.expectEqual(@as(u32, 30), bmp.num_free_entries);
try bmp.setEntry(1);
testing.expectEqual(@as(u32, 3), bmp.bitmaps[0]);
testing.expectEqual(@as(u32, 29), bmp.num_free_entries);
// Repeat setting entry 1 to make sure state doesn't change
try bmp.setEntry(1);
testing.expectEqual(@as(u32, 3), bmp.bitmaps[0]);
testing.expectEqual(@as(u32, 29), bmp.num_free_entries);
testing.expectError(Bitmap(u32).BitmapError.OutOfBounds, bmp.setEntry(31));
testing.expectEqual(@as(u32, 29), bmp.num_free_entries);
}
test "clearEntry" {
var bmp = try Bitmap(u32).init(32, std.heap.direct_allocator);
testing.expectEqual(@as(u32, 32), bmp.num_free_entries);
try bmp.setEntry(0);
testing.expectEqual(@as(u32, 31), bmp.num_free_entries);
try bmp.setEntry(1);
testing.expectEqual(@as(u32, 30), bmp.num_free_entries);
testing.expectEqual(@as(u32, 3), bmp.bitmaps[0]);
try bmp.clearEntry(0);
testing.expectEqual(@as(u32, 31), bmp.num_free_entries);
testing.expectEqual(@as(u32, 2), bmp.bitmaps[0]);
// Repeat to make sure state doesn't change
try bmp.clearEntry(0);
testing.expectEqual(@as(u32, 31), bmp.num_free_entries);
testing.expectEqual(@as(u32, 2), bmp.bitmaps[0]);
// Try clearing an unset entry to make sure state doesn't change
try bmp.clearEntry(2);
testing.expectEqual(@as(u32, 31), bmp.num_free_entries);
testing.expectEqual(@as(u32, 2), bmp.bitmaps[0]);
testing.expectError(Bitmap(u32).BitmapError.OutOfBounds, bmp.clearEntry(32));
}
test "setFirstFree multiple bitmaps" {
var bmp = try Bitmap(u8).init(9, std.heap.direct_allocator);
// Allocate the first entry
testing.expectEqual(bmp.setFirstFree() orelse unreachable, 0);
testing.expectEqual(bmp.bitmaps[0], 1);
// Allocate the second entry
testing.expectEqual(bmp.setFirstFree() orelse unreachable, 1);
testing.expectEqual(bmp.bitmaps[0], 3);
// Allocate the entirety of the first bitmap
var entry: u32 = 2;
var expected: u8 = 7;
while (entry < Bitmap(u8).ENTRIES_PER_BITMAP) {
testing.expectEqual(bmp.setFirstFree() orelse unreachable, entry);
testing.expectEqual(bmp.bitmaps[0], expected);
if (entry + 1 < Bitmap(u8).ENTRIES_PER_BITMAP) {
entry += 1;
expected = expected * 2 + 1;
} else {
break;
}
}
// Try allocating an entry in the next bitmap
testing.expectEqual(bmp.setFirstFree() orelse unreachable, Bitmap(u8).ENTRIES_PER_BITMAP);
testing.expectEqual(bmp.bitmaps[0], Bitmap(u8).BITMAP_FULL);
testing.expectEqual(bmp.bitmaps[1], 1);
// We should no longer be able to allocate any entries
testing.expectEqual(bmp.setFirstFree(), null);
testing.expectEqual(bmp.bitmaps[0], Bitmap(u8).BITMAP_FULL);
testing.expectEqual(bmp.bitmaps[1], 1);
}
test "setFirstFree" {
var bmp = try Bitmap(u32).init(32, std.heap.direct_allocator);
// Allocate the first entry
testing.expectEqual(bmp.setFirstFree() orelse unreachable, 0);
testing.expectEqual(bmp.bitmaps[0], 1);
// Allocate the second entry
testing.expectEqual(bmp.setFirstFree() orelse unreachable, 1);
testing.expectEqual(bmp.bitmaps[0], 3);
// Make all but the MSB occupied and try to allocate it
bmp.bitmaps[0] = Bitmap(u32).BITMAP_FULL & ~@as(u32, 1 << (Bitmap(u32).ENTRIES_PER_BITMAP - 1));
testing.expectEqual(bmp.setFirstFree() orelse unreachable, Bitmap(u32).ENTRIES_PER_BITMAP - 1);
testing.expectEqual(bmp.bitmaps[0], Bitmap(u32).BITMAP_FULL);
// We should no longer be able to allocate any entries
testing.expectEqual(bmp.setFirstFree(), null);
testing.expectEqual(bmp.bitmaps[0], Bitmap(u32).BITMAP_FULL);
}
test "isSet" {
var bmp = try Bitmap(u32).init(32, std.heap.direct_allocator);
bmp.bitmaps[0] = 1;
// Make sure that only the set entry is considered set
testing.expect(try bmp.isSet(0));
var i: u32 = 1;
while (i < bmp.num_entries) : (i += 1) {
testing.expect(!try bmp.isSet(i));
}
bmp.bitmaps[0] = 3;
testing.expect(try bmp.isSet(0));
testing.expect(try bmp.isSet(1));
i = 2;
while (i < bmp.num_entries) : (i += 1) {
testing.expect(!try bmp.isSet(i));
}
bmp.bitmaps[0] = 11;
testing.expect(try bmp.isSet(0));
testing.expect(try bmp.isSet(1));
testing.expect(!try bmp.isSet(2));
testing.expect(try bmp.isSet(3));
i = 4;
while (i < bmp.num_entries) : (i += 1) {
testing.expect(!try bmp.isSet(i));
}
testing.expectError(Bitmap(u32).BitmapError.OutOfBounds, bmp.isSet(33));
}
test "indexToBit" {
var bmp = try Bitmap(u8).init(10, std.heap.direct_allocator);
testing.expectEqual(bmp.indexToBit(0), 1);
testing.expectEqual(bmp.indexToBit(1), 2);
testing.expectEqual(bmp.indexToBit(2), 4);
testing.expectEqual(bmp.indexToBit(3), 8);
testing.expectEqual(bmp.indexToBit(4), 16);
testing.expectEqual(bmp.indexToBit(5), 32);
testing.expectEqual(bmp.indexToBit(6), 64);
testing.expectEqual(bmp.indexToBit(7), 128);
testing.expectEqual(bmp.indexToBit(8), 1);
testing.expectEqual(bmp.indexToBit(9), 2);
}

View file

@ -9,6 +9,7 @@ const tty = @import("tty.zig");
const vga = @import("vga.zig"); const vga = @import("vga.zig");
const log = @import("log.zig"); const log = @import("log.zig");
const serial = @import("serial.zig"); const serial = @import("serial.zig");
const pmm = @import("pmm.zig");
const mem = if (is_test) @import(mock_path ++ "mem_mock.zig") else @import("mem.zig"); const mem = if (is_test) @import(mock_path ++ "mem_mock.zig") else @import("mem.zig");
const panic_root = if (is_test) @import(mock_path ++ "panic_mock.zig") else @import("panic.zig"); const panic_root = if (is_test) @import(mock_path ++ "panic_mock.zig") else @import("panic.zig");
const options = @import("build_options"); const options = @import("build_options");
@ -42,6 +43,7 @@ export fn kmain(mb_info: *multiboot.multiboot_info_t, mb_magic: u32) void {
var buffer = mem_profile.vaddr_end[0..mem_profile.fixed_alloc_size]; var buffer = mem_profile.vaddr_end[0..mem_profile.fixed_alloc_size];
var fixed_allocator = std.heap.FixedBufferAllocator.init(buffer); var fixed_allocator = std.heap.FixedBufferAllocator.init(buffer);
pmm.init(&mem_profile, &fixed_allocator.allocator);
log.logInfo("Init arch " ++ @tagName(builtin.arch) ++ "\n", .{}); log.logInfo("Init arch " ++ @tagName(builtin.arch) ++ "\n", .{});
arch.init(mb_info, &mem_profile, &fixed_allocator.allocator); arch.init(mb_info, &mem_profile, &fixed_allocator.allocator);
log.logInfo("Arch init done\n", .{}); log.logInfo("Arch init done\n", .{});

View file

@ -4,13 +4,30 @@ const expectEqual = std.testing.expectEqual;
const log = @import("log.zig"); const log = @import("log.zig");
pub const MemProfile = struct { pub const MemProfile = struct {
/// The virtual end address of the kernel code.
vaddr_end: [*]u8, vaddr_end: [*]u8,
/// The virtual end address of the kernel code.
vaddr_start: [*]u8, vaddr_start: [*]u8,
/// The physical end address of the kernel code.
physaddr_end: [*]u8, physaddr_end: [*]u8,
/// The physical start address of the kernel code.
physaddr_start: [*]u8, physaddr_start: [*]u8,
/// The amount of memory in the system, in kilobytes.
mem_kb: u32, mem_kb: u32,
/// The size of the fixed buffer allocator used as the first memory allocator.
fixed_alloc_size: u32, fixed_alloc_size: u32,
/// The boot modules provided by the bootloader.
boot_modules: []multiboot.multiboot_module_t, boot_modules: []multiboot.multiboot_module_t,
/// The memory map provided by the bootloader. Desribes which areas of memory are available and
/// which are reserved.
mem_map: []multiboot.multiboot_memory_map_t,
}; };
/// The virtual end of the kernel code /// The virtual end of the kernel code
@ -47,8 +64,11 @@ var ADDR_OFFSET: usize = undefined;
/// ///
pub fn init(mb_info: *multiboot.multiboot_info_t) MemProfile { pub fn init(mb_info: *multiboot.multiboot_info_t) MemProfile {
log.logInfo("Init mem\n", .{}); log.logInfo("Init mem\n", .{});
defer log.logInfo("Done\n", .{});
const mods_count = mb_info.mods_count; const mods_count = mb_info.mods_count;
ADDR_OFFSET = @ptrToInt(&KERNEL_ADDR_OFFSET); ADDR_OFFSET = @ptrToInt(&KERNEL_ADDR_OFFSET);
const mmap_addr = mb_info.mmap_addr;
const num_mmap_entries = mb_info.mmap_length / @sizeOf(multiboot.multiboot_memory_map_t);
const mem_profile = MemProfile{ const mem_profile = MemProfile{
.vaddr_end = @ptrCast([*]u8, &KERNEL_VADDR_END), .vaddr_end = @ptrCast([*]u8, &KERNEL_VADDR_END),
.vaddr_start = @ptrCast([*]u8, &KERNEL_VADDR_START), .vaddr_start = @ptrCast([*]u8, &KERNEL_VADDR_START),
@ -58,8 +78,8 @@ pub fn init(mb_info: *multiboot.multiboot_info_t) MemProfile {
.mem_kb = mb_info.mem_upper + mb_info.mem_lower + 1024, .mem_kb = mb_info.mem_upper + mb_info.mem_lower + 1024,
.fixed_alloc_size = FIXED_ALLOC_SIZE, .fixed_alloc_size = FIXED_ALLOC_SIZE,
.boot_modules = @intToPtr([*]multiboot.multiboot_mod_list, physToVirt(mb_info.mods_addr))[0..mods_count], .boot_modules = @intToPtr([*]multiboot.multiboot_mod_list, physToVirt(mb_info.mods_addr))[0..mods_count],
.mem_map = @intToPtr([*]multiboot.multiboot_memory_map_t, mmap_addr)[0..num_mmap_entries],
}; };
log.logInfo("Done\n", .{});
return mem_profile; return mem_profile;
} }

220
src/kernel/pmm.zig Normal file
View file

@ -0,0 +1,220 @@
const is_test = @import("builtin").is_test;
const std = @import("std");
const build_options = @import("build_options");
const mock_path = build_options.mock_path;
const arch = @import("arch.zig").internals;
const MemProfile = (if (is_test) @import(mock_path ++ "mem_mock.zig") else @import("mem.zig")).MemProfile;
const testing = std.testing;
const panic = @import("panic.zig").panic;
const log = @import("log.zig");
const MEMORY_AVAILABLE = @import("multiboot.zig").MULTIBOOT_MEMORY_AVAILABLE;
const Bitmap = @import("bitmap.zig").Bitmap;
const PmmBitmap = Bitmap(u32);
/// The possible errors thrown by bitmap functions
const PmmError = error{
/// The address given hasn't been allocated
NotAllocated,
};
/// The size of memory associated with each bitmap entry
const BLOCK_SIZE = arch.MEMORY_BLOCK_SIZE;
var bitmap: PmmBitmap = undefined;
///
/// Set the bitmap entry for an address as occupied
///
/// Arguments:
/// IN addr: usize - The address.
///
/// Error: PmmBitmap.BitmapError.
/// *: See PmmBitmap.setEntry. Could occur if the address is out of bounds.
///
fn setAddr(addr: usize) PmmBitmap.BitmapError!void {
try bitmap.setEntry(@intCast(u32, addr / BLOCK_SIZE));
}
///
/// Check if an address is set as occupied.
///
/// Arguments:
/// IN addr: usize - The address to check.
///
/// Return: True if occupied, else false.
///
/// Error: PmmBitmap.BitmapError.
/// *: See PmmBitmap.setEntry. Could occur if the address is out of bounds.
///
fn isSet(addr: usize) PmmBitmap.BitmapError!bool {
return bitmap.isSet(@intCast(u32, addr / BLOCK_SIZE));
}
///
/// Find the next free memory block, set it as occupied and return it. The region allocated will be of size BLOCK_SIZE.
///
/// Return: The address that was allocated.
///
pub fn alloc() ?usize {
if (bitmap.setFirstFree()) |entry| {
return entry * BLOCK_SIZE;
}
return null;
}
///
/// Set the address as free so it can be allocated in the future. This will free a block of size BLOCK_SIZE.
///
/// Arguments:
/// IN addr: usize - The previously allocated address to free. Will be aligned down to the nearest multiple of BLOCK_SIZE.
///
/// Error: PmmError || PmmBitmap.BitmapError.
/// PmmError.NotAllocated: The address wasn't allocated.
/// PmmBitmap.BitmapError.OutOfBounds: The address given was out of bounds.
///
pub fn free(addr: usize) (PmmBitmap.BitmapError || PmmError)!void {
const idx = @intCast(u32, addr / BLOCK_SIZE);
if (try bitmap.isSet(idx)) {
try bitmap.clearEntry(idx);
} else {
return PmmError.NotAllocated;
}
}
///
/// Intiialise the physical memory manager and set all unavailable regions as occupied (those from the memory map and those from the linker symbols).
///
/// Arguments:
/// IN mem: *const MemProfile - The system's memory profile.
/// IN allocator: *std.mem.Allocator - The allocator to use to allocate the bitmaps.
///
pub fn init(mem: *const MemProfile, allocator: *std.mem.Allocator) void {
log.logInfo("Init pmm\n", .{});
bitmap = PmmBitmap.init(mem.mem_kb * 1024 / BLOCK_SIZE, allocator) catch @panic("Bitmap allocation failed");
// Occupy the regions of memory that the memory map describes as reserved
for (mem.mem_map) |entry| {
if (entry.@"type" != MEMORY_AVAILABLE) {
var addr = std.mem.alignBackward(@intCast(usize, entry.addr), BLOCK_SIZE);
var end = @intCast(usize, entry.addr + (entry.len - 1));
// If the end address can be aligned without overflowing then align it
if (end <= std.math.maxInt(usize) - BLOCK_SIZE)
end = std.mem.alignForward(end, BLOCK_SIZE);
while (addr < end) : (addr += BLOCK_SIZE) {
setAddr(addr) catch |e| switch (e) {
// We can ignore out of bounds errors as the memory won't be available anyway
PmmBitmap.BitmapError.OutOfBounds => break,
else => panic(@errorReturnTrace(), "Failed setting address 0x{x} from memory map as occupied: {}", .{ addr, e }),
};
}
}
}
// Occupy kernel memory
var addr = std.mem.alignBackward(@ptrToInt(mem.physaddr_start), BLOCK_SIZE);
while (addr < @ptrToInt(mem.physaddr_end)) : (addr += BLOCK_SIZE) {
setAddr(addr) catch |e| switch (e) {
error.OutOfBounds => panic(@errorReturnTrace(), "Failed setting kernel code address 0x{x} as occupied. The amount of system memory seems to be too low for the kernel image: {}", .{ addr, e }),
else => panic(@errorReturnTrace(), "Failed setting kernel code address 0x{x} as occupied: {}", .{ addr, e }),
};
}
log.logInfo("Done\n", .{});
if (build_options.rt_test) {
runtimeTests(mem);
}
}
///
/// Allocate all blocks and make sure they don't overlap with any reserved addresses.
///
/// Arguments:
/// IN mem: *const MemProfile - The memory profile to check for reserved memory regions.
///
fn runtimeTests(mem: *const MemProfile) void {
// Make sure that occupied memory can't be allocated
var prev_alloc: usize = std.math.maxInt(usize);
while (alloc()) |alloced| {
if (prev_alloc == alloced) {
panic(null, "PMM allocated the same address twice: 0x{x}", .{alloced});
}
prev_alloc = alloced;
for (mem.mem_map) |entry| {
if (entry.@"type" != MEMORY_AVAILABLE) {
var addr = std.mem.alignBackward(@intCast(usize, entry.addr), BLOCK_SIZE);
if (addr == alloced) {
panic(null, "PMM allocated an address that should be reserved by the memory map: 0x{x}", .{addr});
}
}
}
if (alloced >= std.mem.alignBackward(@ptrToInt(mem.physaddr_start), BLOCK_SIZE) and alloced < std.mem.alignForward(@ptrToInt(mem.physaddr_end), BLOCK_SIZE)) {
panic(null, "PMM allocated an address that should be reserved by kernel code: 0x{x}", .{alloced});
}
}
log.logInfo("PMM: Tested allocation\n", .{});
}
test "alloc" {
bitmap = try Bitmap(u32).init(32, std.heap.direct_allocator);
comptime var addr = 0;
comptime var i = 0;
// Allocate all entries, making sure they succeed and return the correct addresses
inline while (i < 32) : ({
i += 1;
addr += BLOCK_SIZE;
}) {
testing.expect(!(try isSet(addr)));
testing.expect(alloc().? == addr);
testing.expect(try isSet(addr));
}
// Allocation should now fail
testing.expect(alloc() == null);
}
test "free" {
bitmap = try Bitmap(u32).init(32, std.heap.direct_allocator);
comptime var i = 0;
// Allocate and free all entries
inline while (i < 32) : (i += 1) {
const addr = alloc().?;
testing.expect(try isSet(addr));
try free(addr);
testing.expect(!(try isSet(addr)));
// Double frees should be caught
testing.expectError(PmmError.NotAllocated, free(addr));
}
}
test "setAddr and isSet" {
const num_entries: u32 = 32;
bitmap = try Bitmap(u32).init(num_entries, std.heap.direct_allocator);
var addr: u32 = 0;
var i: u32 = 0;
while (i < num_entries) : ({
i += 1;
addr += BLOCK_SIZE;
}) {
// Ensure all previous blocks are still set
var h: u32 = 0;
var addr2: u32 = 0;
while (h < i) : ({
h += 1;
addr2 += BLOCK_SIZE;
}) {
testing.expect(try isSet(addr2));
}
// Set the current block
try setAddr(addr);
testing.expect(try isSet(addr));
// Ensure all successive entries are not set
var j: u32 = i + 1;
var addr3: u32 = addr + BLOCK_SIZE;
while (j < num_entries) : ({
j += 1;
addr3 += BLOCK_SIZE;
}) {
testing.expect(!try isSet(addr3));
}
}
}

View file

@ -5,6 +5,7 @@ const MemProfile = mem.MemProfile;
const gdt = @import("gdt_mock.zig"); const gdt = @import("gdt_mock.zig");
const idt = @import("idt_mock.zig"); const idt = @import("idt_mock.zig");
const multiboot = @import("../../../src/kernel/multiboot.zig"); const multiboot = @import("../../../src/kernel/multiboot.zig");
const paging = @import("paging_mock.zig");
const mock_framework = @import("mock_framework.zig"); const mock_framework = @import("mock_framework.zig");
pub const initTest = mock_framework.initTest; pub const initTest = mock_framework.initTest;
@ -35,6 +36,8 @@ pub const InterruptContext = struct {
ss: u32, ss: u32,
}; };
pub const MEMORY_BLOCK_SIZE = paging.PAGE_SIZE_4KB;
pub fn outb(port: u16, data: u8) void { pub fn outb(port: u16, data: u8) void {
return mock_framework.performAction("outb", void, .{ port, data }); return mock_framework.performAction("outb", void, .{ port, data });
} }

View file

@ -7,6 +7,7 @@ pub const MemProfile = struct {
physaddr_start: [*]u8, physaddr_start: [*]u8,
mem_kb: u32, mem_kb: u32,
fixed_alloc_size: u32, fixed_alloc_size: u32,
mem_map: []multiboot.multiboot_memory_map_t,
}; };
// The virtual/physical start/end of the kernel code // The virtual/physical start/end of the kernel code
@ -28,5 +29,6 @@ pub fn init(mb_info: *multiboot.multiboot_info_t) MemProfile {
// Total memory available including the initial 1MiB that grub doesn't include // Total memory available including the initial 1MiB that grub doesn't include
.mem_kb = mb_info.mem_upper + mb_info.mem_lower + 1024, .mem_kb = mb_info.mem_upper + mb_info.mem_lower + 1024,
.fixed_alloc_size = FIXED_ALLOC_SIZE, .fixed_alloc_size = FIXED_ALLOC_SIZE,
.mem_map = undefined,
}; };
} }

View file

@ -0,0 +1 @@
pub const PAGE_SIZE_4KB = 4096;

View file

@ -36,6 +36,8 @@ def get_pre_archinit_cases():
TestCase("Log warning tests", [r"Test WARNING level", r"Test WARNING level with args a, 1", r"Test WARNING function", r"Test WARNING function with args a, 1"], "\[WARNING\] "), TestCase("Log warning tests", [r"Test WARNING level", r"Test WARNING level with args a, 1", r"Test WARNING function", r"Test WARNING function with args a, 1"], "\[WARNING\] "),
TestCase("Log error tests", [r"Test ERROR level", r"Test ERROR level with args a, 1", r"Test ERROR function", r"Test ERROR function with args a, 1"], "\[ERROR\] "), TestCase("Log error tests", [r"Test ERROR level", r"Test ERROR level with args a, 1", r"Test ERROR function", r"Test ERROR function with args a, 1"], "\[ERROR\] "),
TestCase("Mem init", [r"Init mem", r"Done"]), TestCase("Mem init", [r"Init mem", r"Done"]),
TestCase("PMM init", [r"Init pmm", r"Done"]),
TestCase("PMM tests", [r"PMM: Tested allocation"]),
TestCase("Arch init starts", [r"Init arch \w+"]) TestCase("Arch init starts", [r"Init arch \w+"])
] ]