const build_options = @import("build_options"); const mock_path = build_options.mock_path; const builtin = @import("builtin"); const is_test = builtin.is_test; const std = @import("std"); const bitmap = @import("bitmap.zig"); const pmm = @import("pmm.zig"); const mem = if (is_test) @import(mock_path ++ "mem_mock.zig") else @import("mem.zig"); const tty = @import("tty.zig"); const multiboot = @import("multiboot.zig"); const log = @import("log.zig"); const panic = @import("panic.zig").panic; const arch = @import("arch.zig").internals; /// Attributes for a virtual memory allocation pub const Attributes = struct { /// Whether this memory belongs to the kernel and can therefore not be accessed in user mode kernel: bool, /// If this memory can be written to writable: bool, /// If this memory can be cached. Memory mapped to a device shouldn't, for example cachable: bool, }; /// All data that must be remembered for a virtual memory allocation const Allocation = struct { /// The physical blocks of memory associated with this allocation physical: std.ArrayList(usize), }; /// The size of each allocatable block, the same as the physical memory manager's block size pub const BLOCK_SIZE: usize = pmm.BLOCK_SIZE; pub const MapperError = error{ InvalidVirtualAddress, InvalidPhysicalAddress, AddressMismatch, MisalignedVirtualAddress, MisalignedPhysicalAddress, NotMapped, }; /// /// Returns a container that can map and unmap virtual memory to physical memory. /// The mapper can pass some payload data when mapping an unmapping, which is of type `Payload`. This can be anything that the underlying mapper needs to carry out the mapping process. /// For x86, it would be the page directory that is being mapped within. An architecture or other mapper can specify the data it needs when mapping by specifying this type. /// /// Arguments: /// IN comptime Payload: type - The type of the VMM-specific payload to pass when mapping and unmapping /// /// Return: type /// The Mapper type constructed. /// pub fn Mapper(comptime Payload: type) type { return struct { /// /// Map a region (can span more than one block) of virtual memory to physical memory. After a call to this function, the memory should be present the next time it is accessed. /// The attributes given must be obeyed when possible. /// /// Arguments: /// IN virtual_start: usize - The start of the virtual memory to map /// IN virtual_end: usize - The end of the virtual memory to map /// IN physical_start: usize - The start of the physical memory to map to /// IN physical_end: usize - The end of the physical memory to map to /// IN attrs: Attributes - The attributes to apply to this region of memory /// INOUT allocator: std.mem.Allocator - The allocator to use when mapping, if required /// IN spec: Payload - The payload to pass to the mapper /// /// Error: std.mem.AllocatorError || MapperError /// The causes depend on the mapper used /// mapFn: fn (virtual_start: usize, virtual_end: usize, physical_start: usize, physical_end: usize, attrs: Attributes, allocator: *std.mem.Allocator, spec: Payload) (std.mem.Allocator.Error || MapperError)!void, /// /// Unmap a region (can span more than one block) of virtual memory from its physical memory. After a call to this function, the memory should not be accesible without error. /// /// Arguments: /// IN virtual_start: usize - The start of the virtual region to unmap /// IN virtual_end: usize - The end of the virtual region to unmap /// IN spec: Payload - The payload to pass to the mapper /// /// Error: std.mem.AllocatorError || MapperError /// The causes depend on the mapper used /// unmapFn: fn (virtual_start: usize, virtual_end: usize, spec: Payload) (std.mem.Allocator.Error || MapperError)!void, }; } /// Errors that can be returned by VMM functions pub const VmmError = error{ /// A memory region expected to be allocated wasn't NotAllocated, /// A memory region expected to not be allocated was AlreadyAllocated, /// A physical memory region expected to not be allocated was PhysicalAlreadyAllocated, /// A physical region of memory isn't of the same size as a virtual region PhysicalVirtualMismatch, /// Virtual addresses are invalid InvalidVirtAddresses, /// Physical addresses are invalid InvalidPhysAddresses, }; /// /// Construct a virtual memory manager to keep track of allocated and free virtual memory regions within a certain space /// /// Arguments: /// IN comptime Payload: type - The type of the payload to pass to the mapper /// /// Return: type /// The constructed type /// pub fn VirtualMemoryManager(comptime Payload: type) type { return struct { /// The bitmap that keeps track of allocated and free regions bmp: bitmap.Bitmap(usize), /// The start of the memory to be tracked start: usize, /// The end of the memory to be tracked end: usize, /// The allocator to use when allocating and freeing regions allocator: *std.mem.Allocator, /// All allocations that have been made with this manager allocations: std.hash_map.AutoHashMap(usize, Allocation), /// The mapper to use when allocating and freeing regions mapper: Mapper(Payload), /// The payload to pass to the mapper functions payload: Payload, const Self = @This(); /// /// Initialise a virtual memory manager /// /// Arguments: /// IN start: usize - The start of the memory region to manage /// IN end: usize - The end of the memory region to manage. Must be greater than the start /// INOUT allocator: *std.mem.Allocator - The allocator to use when allocating and freeing regions /// IN mapper: Mapper - The mapper to use when allocating and freeing regions /// IN payload: Payload - The payload data to be passed to the mapper /// /// Return: Self /// The manager constructed /// /// Error: std.mem.Allocator.Error /// std.mem.Allocator.Error.OutOfMemory - The allocator cannot allocate the memory required /// pub fn init(start: usize, end: usize, allocator: *std.mem.Allocator, mapper: Mapper(Payload), payload: Payload) std.mem.Allocator.Error!Self { const size = end - start; var bmp = try bitmap.Bitmap(usize).init(std.mem.alignForward(size, pmm.BLOCK_SIZE) / pmm.BLOCK_SIZE, allocator); return Self{ .bmp = bmp, .start = start, .end = end, .allocator = allocator, .allocations = std.hash_map.AutoHashMap(usize, Allocation).init(allocator), .mapper = mapper, .payload = payload, }; } /// /// Check if a virtual memory address has been set /// /// Arguments: /// IN self: *Self - The manager to check /// IN virt: usize - The virtual memory address to check /// /// Return: bool /// Whether the address is set /// /// Error: pmm.PmmError /// Bitmap(u32).Error.OutOfBounds - The address given is outside of the memory managed /// pub fn isSet(self: *const Self, virt: usize) bitmap.Bitmap(u32).BitmapError!bool { return try self.bmp.isSet(virt / BLOCK_SIZE); } /// /// Map a region (can span more than one block) of virtual memory to a specific region of memory /// /// Arguments: /// INOUT self: *Self - The manager to modify /// IN virtual_start: usize - The start of the virtual region /// IN virtual_end: usize - The end of the virtual region /// IN physical_start: usize - The start of the physical region /// IN physical_end: usize - The end of the physical region /// IN attrs: Attributes - The attributes to apply to the memory regions /// /// Error: VmmError || Bitmap(u32).BitmapError || std.mem.Allocator.Error || MapperError /// VmmError.AlreadyAllocated - The virtual address has arlready been allocated /// VmmError.PhysicalAlreadyAllocated - The physical address has already been allocated /// VmmError.PhysicalVirtualMismatch - The physical region and virtual region are of different sizes /// VmmError.InvalidVirtAddresses - The start virtual address is greater than the end address /// VmmError.InvalidPhysicalAddresses - The start physical address is greater than the end address /// Bitmap.BitmapError.OutOfBounds - The physical or virtual addresses are out of bounds /// std.mem.Allocator.Error.OutOfMemory - Allocating the required memory failed /// MapperError.* - The causes depend on the mapper used /// pub fn set(self: *Self, virtual_start: usize, virtual_end: usize, physical_start: usize, physical_end: usize, attrs: Attributes) (VmmError || bitmap.Bitmap(u32).BitmapError || std.mem.Allocator.Error || MapperError)!void { var virt = virtual_start; while (virt < virtual_end) : (virt += BLOCK_SIZE) { if (try self.isSet(virt)) return VmmError.AlreadyAllocated; } var phys = physical_start; while (phys < physical_end) : (phys += BLOCK_SIZE) { if (try pmm.isSet(phys)) return VmmError.PhysicalAlreadyAllocated; } if (virtual_end - virtual_start != physical_end - physical_start) return VmmError.PhysicalVirtualMismatch; if (physical_start > physical_end) return VmmError.InvalidPhysAddresses; if (virtual_start > virtual_end) return VmmError.InvalidVirtAddresses; virt = virtual_start; while (virt < virtual_end) : (virt += BLOCK_SIZE) { try self.bmp.setEntry(virt / BLOCK_SIZE); } try self.mapper.mapFn(virtual_start, virtual_end, physical_start, physical_end, attrs, self.allocator, self.payload); var phys_list = std.ArrayList(usize).init(self.allocator); phys = physical_start; while (phys < physical_end) : (phys += BLOCK_SIZE) { try pmm.setAddr(phys); try phys_list.append(phys); } _ = try self.allocations.put(virt, Allocation{ .physical = phys_list }); } /// /// Allocate a number of contiguous blocks of virtual memory /// /// Arguments: /// INOUT self: *Self - The manager to allocate for /// IN num: usize - The number of blocks to allocate /// IN attrs: Attributes - The attributes to apply to the mapped memory /// /// Return: ?usize /// The address at the start of the allocated region, or null if no region could be allocated due to a lack of contiguous blocks. /// /// Error: std.mem.Allocator.Error /// std.mem.AllocatorError.OutOfMemory: The required amount of memory couldn't be allocated /// pub fn alloc(self: *Self, num: usize, attrs: Attributes) std.mem.Allocator.Error!?usize { if (num == 0) return null; // Ensure that there is both enough physical and virtual address space free if (pmm.blocksFree() >= num and self.bmp.num_free_entries >= num) { // The virtual address space must be contiguous if (self.bmp.setContiguous(num)) |entry| { var block_list = std.ArrayList(usize).init(self.allocator); try block_list.ensureCapacity(num); var i: usize = 0; const vaddr_start = self.start + entry * BLOCK_SIZE; var vaddr = vaddr_start; // Map the blocks to physical memory while (i < num) : (i += 1) { const addr = pmm.alloc() orelse unreachable; try block_list.append(addr); // The map function failing isn't the caller's responsibility so panic as it shouldn't happen self.mapper.mapFn(vaddr, vaddr + BLOCK_SIZE, addr, addr + BLOCK_SIZE, attrs, self.allocator, self.payload) catch |e| panic(@errorReturnTrace(), "Failed to map virtual memory: {}\n", .{e}); vaddr += BLOCK_SIZE; } _ = try self.allocations.put(vaddr_start, Allocation{ .physical = block_list }); return vaddr_start; } } return null; } /// /// Free a previous allocation /// /// Arguments: /// INOUT self: *Self - The manager to free within /// IN vaddr: usize - The start of the allocation to free. This should be the address returned from a prior `alloc` call /// /// Error: Bitmap.BitmapError || VmmError /// VmmError.NotAllocated - This address hasn't been allocated yet /// Bitmap.BitmapError.OutOfBounds - The address is out of the manager's bounds /// pub fn free(self: *Self, vaddr: usize) (bitmap.Bitmap(u32).BitmapError || VmmError)!void { const entry = vaddr / BLOCK_SIZE; if (try self.bmp.isSet(entry)) { // There will be an allocation associated with this virtual address const allocation = self.allocations.get(vaddr) orelse unreachable; const physical = allocation.value.physical; defer physical.deinit(); const num_physical_allocations = physical.items.len; for (physical.items) |block, i| { // Clear the address space entry, unmap the virtual memory and free the physical memory try self.bmp.clearEntry(entry + i); pmm.free(block) catch |e| panic(@errorReturnTrace(), "Failed to free PMM reserved memory at {x}: {}\n", .{ block * BLOCK_SIZE, e }); } // Unmap the entire range const region_start = entry * BLOCK_SIZE; const region_end = (entry + num_physical_allocations) * BLOCK_SIZE; self.mapper.unmapFn(region_start, region_end, self.payload) catch |e| panic(@errorReturnTrace(), "Failed to unmap VMM reserved memory from {x} to {x}: {}\n", .{ region_start, region_end, e }); // The allocation is freed so remove from the map self.allocations.removeAssertDiscard(vaddr); } else { return VmmError.NotAllocated; } } }; } /// /// Initialise the main system virtual memory manager covering 4GB. Maps in the kernel code, TTY, multiboot info and boot modules /// /// Arguments: /// IN mem_profile: *const mem.MemProfile - The system's memory profile. This is used to find the kernel code region and boot modules /// IN mb_info: *multiboot.multiboot_info_t - The multiboot info /// INOUT allocator: *std.mem.Allocator - The allocator to use when needing to allocate memory /// IN comptime Payload: type - The type of the data to pass as a payload to the virtual memory manager /// IN mapper: Mapper - The memory mapper to call when allocating and free virtual memory /// IN payload: Paylaod - The payload data to pass to the virtual memory manager /// /// Return: VirtualMemoryManager /// The virtual memory manager created with all stated regions allocated /// /// Error: std.mem.Allocator.Error /// std.mem.Allocator.Error.OutOfMemory - The allocator cannot allocate the memory required /// pub fn init(mem_profile: *const mem.MemProfile, mb_info: *multiboot.multiboot_info_t, allocator: *std.mem.Allocator) std.mem.Allocator.Error!VirtualMemoryManager(arch.VmmPayload) { log.logInfo("Init vmm\n", .{}); defer log.logInfo("Done vmm\n", .{}); var vmm = try VirtualMemoryManager(arch.VmmPayload).init(BLOCK_SIZE, 0xFFFFFFFF, allocator, arch.VMM_MAPPER, arch.KERNEL_VMM_PAYLOAD); // Map in kernel // Calculate start and end of mapping const v_start = std.mem.alignBackward(@ptrToInt(mem_profile.vaddr_start), BLOCK_SIZE); const v_end = std.mem.alignForward(@ptrToInt(mem_profile.vaddr_end) + mem_profile.fixed_alloc_size, BLOCK_SIZE); const p_start = std.mem.alignBackward(@ptrToInt(mem_profile.physaddr_start), BLOCK_SIZE); const p_end = std.mem.alignForward(@ptrToInt(mem_profile.physaddr_end) + mem_profile.fixed_alloc_size, BLOCK_SIZE); vmm.set(v_start, v_end, p_start, p_end, .{ .kernel = true, .writable = false, .cachable = true }) catch |e| panic(@errorReturnTrace(), "Failed mapping kernel code in VMM: {}", .{e}); // Map in tty const tty_addr = tty.getVideoBufferAddress(); const tty_phys = mem.virtToPhys(tty_addr); const tty_buff_size = 32 * 1024; vmm.set(tty_addr, tty_addr + tty_buff_size, tty_phys, tty_phys + tty_buff_size, .{ .kernel = true, .writable = true, .cachable = true }) catch |e| panic(@errorReturnTrace(), "Failed mapping TTY in VMM: {}", .{e}); // Map in the multiboot info struct const mb_info_addr = std.mem.alignBackward(@ptrToInt(mb_info), BLOCK_SIZE); const mb_info_end = std.mem.alignForward(mb_info_addr + @sizeOf(multiboot.multiboot_info_t), BLOCK_SIZE); vmm.set(mb_info_addr, mb_info_end, mem.virtToPhys(mb_info_addr), mem.virtToPhys(mb_info_end), .{ .kernel = true, .writable = false, .cachable = true }) catch |e| panic(@errorReturnTrace(), "Failed mapping multiboot info in VMM: {}", .{e}); // Map in each boot module for (mem_profile.boot_modules) |*module| { const mod_v_struct_start = std.mem.alignBackward(@ptrToInt(module), BLOCK_SIZE); const mod_v_struct_end = std.mem.alignForward(mod_v_struct_start + @sizeOf(multiboot.multiboot_module_t), BLOCK_SIZE); vmm.set(mod_v_struct_start, mod_v_struct_end, mem.virtToPhys(mod_v_struct_start), mem.virtToPhys(mod_v_struct_end), .{ .kernel = true, .writable = true, .cachable = true }) catch |e| switch (e) { // A previous allocation could cover this region so the AlreadyAllocated error can be ignored VmmError.AlreadyAllocated => break, else => panic(@errorReturnTrace(), "Failed mapping boot module struct in VMM: {}", .{e}), }; const mod_p_start = std.mem.alignBackward(module.mod_start, BLOCK_SIZE); const mod_p_end = std.mem.alignForward(module.mod_end, BLOCK_SIZE); vmm.set(mem.physToVirt(mod_p_start), mem.physToVirt(mod_p_end), mod_p_start, mod_p_end, .{ .kernel = true, .writable = true, .cachable = true }) catch |e| panic(@errorReturnTrace(), "Failed mapping boot module in VMM: {}", .{e}); } if (build_options.rt_test) runtimeTests(arch.VmmPayload, vmm, mem_profile, mb_info); return vmm; } test "alloc and free" { const num_entries = 512; var vmm = try testInit(num_entries); var allocations = test_allocations orelse unreachable; var virtual_allocations = std.ArrayList(usize).init(std.testing.allocator); defer virtual_allocations.deinit(); var entry: u32 = 0; while (entry < num_entries) { // Test allocating various numbers of blocks all at once // Rather than using a random number generator, just set the number of blocks to allocate based on how many entries have been done so far var num_to_alloc: u32 = if (entry > 400) @as(u32, 8) else if (entry > 320) @as(u32, 14) else if (entry > 270) @as(u32, 9) else if (entry > 150) @as(u32, 26) else @as(u32, 1); const result = try vmm.alloc(num_to_alloc, .{ .kernel = true, .writable = true, .cachable = true }); var should_be_set = true; if (entry + num_to_alloc > num_entries) { // If the number to allocate exceeded the number of entries, then allocation should have failed std.testing.expectEqual(@as(?usize, null), result); should_be_set = false; } else { // Else it should have succedded and allocated the correct address std.testing.expectEqual(@as(?usize, vmm.start + entry * BLOCK_SIZE), result); try virtual_allocations.append(result orelse unreachable); } // Make sure that the entries are set or not depending on the allocation success var vaddr = entry * BLOCK_SIZE; while (vaddr < (entry + num_to_alloc) * BLOCK_SIZE) : (vaddr += BLOCK_SIZE) { if (should_be_set) { // Allocation succeeded so this address should be set std.testing.expect(try vmm.isSet(vaddr)); // The test mapper should have received this address std.testing.expect(try allocations.isSet(vaddr / BLOCK_SIZE)); } else { // Allocation failed as there weren't enough free entries if (vaddr >= num_entries * BLOCK_SIZE) { // If this address is beyond the VMM's end address, it should be out of bounds std.testing.expectError(bitmap.Bitmap(u32).BitmapError.OutOfBounds, vmm.isSet(vaddr)); std.testing.expectError(bitmap.Bitmap(u64).BitmapError.OutOfBounds, allocations.isSet(vaddr / BLOCK_SIZE)); } else { // Else it should not be set std.testing.expect(!(try vmm.isSet(vaddr))); // The test mapper should not have received this address std.testing.expect(!(try allocations.isSet(vaddr / BLOCK_SIZE))); } } } entry += num_to_alloc; // All later entries should not be set var later_entry = entry; while (later_entry < num_entries) : (later_entry += 1) { std.testing.expect(!(try vmm.isSet(vmm.start + later_entry * BLOCK_SIZE))); std.testing.expect(!(try pmm.isSet(later_entry * BLOCK_SIZE))); } } // Try freeing all allocations for (virtual_allocations.items) |alloc| { const alloc_group = vmm.allocations.get(alloc); std.testing.expect(alloc_group != null); const physical = alloc_group.?.value.physical; // We need to create a copy of the physical allocations since the free call deinits them var physical_copy = std.ArrayList(usize).init(std.testing.allocator); defer physical_copy.deinit(); // Make sure they are all reserved in the PMM for (physical.items) |phys| { std.testing.expect(try pmm.isSet(phys)); try physical_copy.append(phys); } vmm.free(alloc) catch unreachable; // This virtual allocation should no longer be in the hashmap std.testing.expectEqual(vmm.allocations.get(alloc), null); std.testing.expect(!try vmm.isSet(alloc)); // And all its physical blocks should now be free for (physical_copy.items) |phys| { std.testing.expect(!try pmm.isSet(phys)); } } } test "set" { const num_entries = 512; var vmm = try testInit(num_entries); const vstart = BLOCK_SIZE * 37; const vend = BLOCK_SIZE * 46; const pstart = vstart + 123; const pend = vend + 123; const attrs = Attributes{ .kernel = true, .writable = true, .cachable = true }; try vmm.set(vstart, vend, pstart, pend, attrs); var allocations = test_allocations orelse unreachable; // The entries before the virtual start shouldn't be set var vaddr = vmm.start; while (vaddr < vstart) : (vaddr += BLOCK_SIZE) { std.testing.expect(!(try allocations.isSet(vaddr / BLOCK_SIZE))); } // The entries up until the virtual end should be set while (vaddr < vend) : (vaddr += BLOCK_SIZE) { std.testing.expect(try allocations.isSet(vaddr / BLOCK_SIZE)); } // The entries after the virtual end should not be set while (vaddr < vmm.end) : (vaddr += BLOCK_SIZE) { std.testing.expect(!(try allocations.isSet(vaddr / BLOCK_SIZE))); } } var test_allocations: ?bitmap.Bitmap(u64) = null; var test_mapper = Mapper(u8){ .mapFn = testMap, .unmapFn = testUnmap }; /// /// Initialise a virtual memory manager used for testing /// /// Arguments: /// IN num_entries: u32 - The number of entries the VMM should track /// /// Return: VirtualMemoryManager(u8) /// The VMM constructed /// /// Error: std.mem.Allocator.Error /// OutOfMemory: The allocator couldn't allocate the structures needed /// fn testInit(num_entries: u32) std.mem.Allocator.Error!VirtualMemoryManager(u8) { if (test_allocations == null) { test_allocations = try bitmap.Bitmap(u64).init(num_entries, std.heap.page_allocator); } else |allocations| { var entry: u32 = 0; while (entry < allocations.num_entries) : (entry += 1) { allocations.clearEntry(entry) catch unreachable; } } var allocations = test_allocations orelse unreachable; const mem_profile = mem.MemProfile{ .vaddr_end = undefined, .vaddr_start = undefined, .physaddr_start = undefined, .physaddr_end = undefined, .mem_kb = num_entries * BLOCK_SIZE / 1024, .fixed_alloc_size = undefined, .mem_map = &[_]multiboot.multiboot_memory_map_t{}, .boot_modules = &[_]multiboot.multiboot_module_t{} }; pmm.init(&mem_profile, std.heap.page_allocator); return try VirtualMemoryManager(u8).init(0, num_entries * BLOCK_SIZE, std.heap.page_allocator, test_mapper, 39); } /// /// A mapping function used when doing unit tests /// /// Arguments: /// IN vstart: usize - The start of the virtual region to map /// IN vend: usize - The end of the virtual region to map /// IN pstart: usize - The start of the physical region to map /// IN pend: usize - The end of the physical region to map /// IN attrs: Attributes - The attributes to map with /// INOUT allocator: *std.mem.Allocator - The allocator to use. Ignored /// IN payload: u8 - The payload value. Expected to be 39 /// fn testMap(vstart: usize, vend: usize, pstart: usize, pend: usize, attrs: Attributes, allocator: *std.mem.Allocator, payload: u8) (std.mem.Allocator.Error || MapperError)!void { std.testing.expectEqual(@as(u8, 39), payload); var vaddr = vstart; while (vaddr < vend) : (vaddr += BLOCK_SIZE) { (test_allocations orelse unreachable).setEntry(vaddr / BLOCK_SIZE) catch unreachable; } } /// /// An unmapping function used when doing unit tests /// /// Arguments: /// IN vstart: usize - The start of the virtual region to unmap /// IN vend: usize - The end of the virtual region to unmap /// IN payload: u8 - The payload value. Expected to be 39 /// fn testUnmap(vstart: usize, vend: usize, payload: u8) (std.mem.Allocator.Error || MapperError)!void { std.testing.expectEqual(@as(u8, 39), payload); var vaddr = vstart; while (vaddr < vend) : (vaddr += BLOCK_SIZE) { (test_allocations orelse unreachable).clearEntry(vaddr / BLOCK_SIZE) catch unreachable; } } /// /// Run the runtime tests. /// /// Arguments: /// IN comptime Payload: type - The type of the payload passed to the mapper /// IN vmm: VirtualMemoryManager(Payload) - The virtual memory manager to test /// IN mem_profile: *const mem.MemProfile - The mem profile with details about all the memory regions that should be reserved /// IN mb_info: *multiboot.multiboot_info_t - The multiboot info struct that should also be reserved /// fn runtimeTests(comptime Payload: type, vmm: VirtualMemoryManager(Payload), mem_profile: *const mem.MemProfile, mb_info: *multiboot.multiboot_info_t) void { const v_start = std.mem.alignBackward(@ptrToInt(mem_profile.vaddr_start), BLOCK_SIZE); const v_end = std.mem.alignForward(@ptrToInt(mem_profile.vaddr_end) + mem_profile.fixed_alloc_size, BLOCK_SIZE); const p_start = std.mem.alignBackward(@ptrToInt(mem_profile.physaddr_start), BLOCK_SIZE); const p_end = std.mem.alignForward(@ptrToInt(mem_profile.physaddr_end) + mem_profile.fixed_alloc_size, BLOCK_SIZE); const tty_addr = tty.getVideoBufferAddress(); const tty_phys = mem.virtToPhys(tty_addr); const tty_buff_size = 32 * 1024; const mb_info_addr = std.mem.alignBackward(@ptrToInt(mb_info), BLOCK_SIZE); const mb_info_end = std.mem.alignForward(mb_info_addr + @sizeOf(multiboot.multiboot_info_t), BLOCK_SIZE); // Make sure all blocks before the mb info are not set var vaddr = vmm.start; while (vaddr < mb_info_addr) : (vaddr += BLOCK_SIZE) { const set = vmm.isSet(vaddr) catch |e| panic(@errorReturnTrace(), "Failed to check if mb_info address {x} is set: {x}", .{ vaddr, e }); if (set) panic(null, "Address before mb_info was set: {x}", .{vaddr}); } // Make sure all blocks associated with the mb info are set while (vaddr < mb_info_end) : (vaddr += BLOCK_SIZE) { const set = vmm.isSet(vaddr) catch |e| panic(@errorReturnTrace(), "Failed to check if mb_info address {x} is set: {x}", .{ vaddr, e }); if (!set) panic(null, "Address for mb_info was not set: {x}", .{vaddr}); } // Make sure all blocks before the kernel code are not set while (vaddr < tty_addr) : (vaddr += BLOCK_SIZE) { const set = vmm.isSet(vaddr) catch |e| panic(@errorReturnTrace(), "Failed to check if tty address {x} is set: {x}", .{ vaddr, e }); if (set) panic(null, "Address before tty was set: {x}", .{vaddr}); } // Make sure all blocks associated with the kernel code are set while (vaddr < tty_addr + tty_buff_size) : (vaddr += BLOCK_SIZE) { const set = vmm.isSet(vaddr) catch |e| panic(@errorReturnTrace(), "Failed to check if tty address {x} is set: {x}", .{ vaddr, e }); if (!set) panic(null, "Address for tty was not set: {x}", .{vaddr}); } // Make sure all blocks before the kernel code are not set while (vaddr < v_start) : (vaddr += BLOCK_SIZE) { const set = vmm.isSet(vaddr) catch |e| panic(@errorReturnTrace(), "Failed to check if kernel code address {x} is set: {x}", .{ vaddr, e }); if (set) panic(null, "Address before kernel code was set: {x}", .{vaddr}); } // Make sure all blocks associated with the kernel code are set while (vaddr < v_end) : (vaddr += BLOCK_SIZE) { const set = vmm.isSet(vaddr) catch |e| panic(@errorReturnTrace(), "Failed to check if kernel code address {x} is set: {x}", .{ vaddr, e }); if (!set) panic(null, "Address for kernel code was not set: {x}", .{vaddr}); } // Make sure all blocks after the kernel code are not set while (vaddr < vmm.end - BLOCK_SIZE) : (vaddr += BLOCK_SIZE) { const set = vmm.isSet(vaddr) catch |e| panic(@errorReturnTrace(), "Failed to check if address after {x} is set: {x}", .{ vaddr, e }); if (set) panic(null, "Address after kernel code was set: {x}", .{vaddr}); } log.logInfo("VMM: Tested allocations\n", .{}); }