pluto/test/runtime_test.zig
DrDeano d600be874c
Initial scheduler
Fix TSS

Also change to .{} syntax where appropriate.
Added the SS segment
Fixed spelling

Refactoring GDT


Multitasking working for now


WIP scheduler

Refactored Bitmap a bit

WIP still


Task switching working

Handlers return the stack pointer that will be used to restore the tasks stack, normal handlers will return the same stack pointer it was called with where task switching will return the stack pointer of the next task and restore its state using the interrupt stub.

Initial scheduler done


Created a stage 2 init task


Change u32 to usize


Move Task to arch specific


WIP


WIP2


Removed esp from task, replaced with stack_pointer


Removed the debug logs


Fixed init task stack


Change pickNextTask to pointer manipulation

This allows less allocations so faster switching

Temporary enable interrupts for some runtime tests

PIT and RTC need interrupts enabled to run their runtime tests

Renamed schedule => pickNextTask, comptime bitmap for pids not task init

And some other stuff: No pub for the task anymore
Use the leak detector allocator

Fmt


Fix unit tests

And some other stuff :P

PR review

Moved Task out of arch and have the stack init in the arch file
Mocking clean up
Removed commented code
Renamed createTask to scheduleTask where the user will have to provide a task to schedule
Removed redundant pub in log runtime test
Removed global allocator for scheduler
Cleaner assembly in paging

Fmt


Added new Scheduler test mode


Added new test mode to CI


Removed one of the prints


Added doc comment, task test for i386


Removed test


WIP


Runtime tests work

Have a global set in one task and reacted to in another. Also test that local variables are preserved after a task switch.

Removed new lines


Increased line length


Move the allocation of the bool above the task creation
2020-07-18 22:46:24 +01:00

314 lines
11 KiB
Zig

const std = @import("std");
const ChildProcess = std.ChildProcess;
const Thread = std.Thread;
const Allocator = std.mem.Allocator;
const Builder = std.build.Builder;
const Step = std.build.Step;
const Queue = std.atomic.Queue([]const u8);
const Node = std.TailQueue([]const u8).Node;
// Creating a new runtime test:
// 1. Add a enum to `TestMode`. The name should try to describe the test in one word :P
// 2. Add a description for the new runtime test to explain to the use what this will test.
// 3. Create a function with in the RuntimeStep struct that will perform the test. At least this
// should use `self.get_msg()` which will get the serial log lines from the OS. Look at
// test_init or test_panic for examples.
// 4. In the create function, add your test mode and test function to the switch.
// 5. Celebrate if it works lel
/// The enumeration of tests with all the runtime tests.
pub const TestMode = enum {
/// This is for the default test mode. This will just run the OS normally.
None,
/// Run the OS's initialisation runtime tests to ensure the OS is properly set up.
Initialisation,
/// Run the panic runtime test.
Panic,
/// Run the scheduler runtime test.
Scheduler,
///
/// Return a string description for the test mode provided.
///
/// Argument:
/// IN mode: TestMode - The test mode.
///
/// Return: []const u8
/// The string description for the test mode.
///
pub fn getDescription(mode: TestMode) []const u8 {
return switch (mode) {
.None => "Runs the OS normally (Default)",
.Initialisation => "Initialisation runtime tests",
.Panic => "Panic runtime tests",
.Scheduler => "Scheduler runtime tests",
};
}
};
/// The runtime step for running the runtime tests for the OS.
pub const RuntimeStep = struct {
/// The Step, that is all you need to know
step: Step,
/// The builder pointer, also all you need to know
builder: *Builder,
/// The message queue that stores the log lines
msg_queue: Queue,
/// The qemu process, this is needed for the `read_logs` thread.
os_proc: *ChildProcess,
/// The argv of the qemu process so can create the qemu process
argv: [][]const u8,
/// The test function that will be run for the current runtime test.
test_func: TestFn,
/// The error set for the RuntimeStep
const Error = error{
/// The error for if a test fails. If the test function returns false, this will be thrown
/// at the wnd of the make function as we need to clean up first. This will ensure the
/// build fails.
TestFailed,
/// This is used for `self.get_msg()` when the queue is empty after a timeout.
QueueEmpty,
};
/// The type of the test function.
const TestFn = fn (self: *RuntimeStep) bool;
/// The time used for getting message from the message queue. This is in milliseconds.
const queue_timeout: usize = 5000;
///
/// This will just print all the serial logs.
///
/// Arguments:
/// IN/OUT self: *RuntimeStep - Self.
///
/// Return: bool
/// This will always return true
///
fn print_logs(self: *RuntimeStep) bool {
while (true) {
const msg = self.get_msg() catch return true;
defer self.builder.allocator.free(msg);
std.debug.warn("{}\n", .{msg});
}
}
///
/// This tests the OS is initialised correctly by checking that we get a `SUCCESS` at the end.
///
/// Arguments:
/// IN/OUT self: *RuntimeStep - Self.
///
/// Return: bool
/// Whether the test has passed or failed.
///
fn test_init(self: *RuntimeStep) bool {
while (true) {
const msg = self.get_msg() catch return false;
defer self.builder.allocator.free(msg);
// Print the line to see what is going on
std.debug.warn("{}\n", .{msg});
if (std.mem.startsWith(u8, msg, "[ERROR] FAILURE")) {
return false;
} else if (std.mem.eql(u8, msg, "[INFO] SUCCESS")) {
return true;
}
}
}
///
/// This tests the OS's panic by checking that we get a kernel panic for integer overflow.
///
/// Arguments:
/// IN/OUT self: *RuntimeStep - Self.
///
/// Return: bool
/// Whether the test has passed or failed.
///
fn test_panic(self: *RuntimeStep) bool {
while (true) {
const msg = self.get_msg() catch return false;
defer self.builder.allocator.free(msg);
// Print the line to see what is going on
std.debug.warn("{}\n", .{msg});
if (std.mem.eql(u8, msg, "[ERROR] Kernel panic: integer overflow")) {
return true;
}
}
}
///
/// This tests the OS's scheduling by checking that we schedule a task that prints the success.
///
/// Arguments:
/// IN/OUT self: *RuntimeStep - Self.
///
/// Return: bool
/// Whether the test has passed or failed.
///
fn test_scheduler(self: *RuntimeStep) bool {
var state: usize = 0;
while (true) {
const msg = self.get_msg() catch return false;
defer self.builder.allocator.free(msg);
std.debug.warn("{}\n", .{msg});
// Make sure `[INFO] Switched` then `[INFO] SUCCESS: Scheduler variables preserved` are logged in this order
if (std.mem.eql(u8, msg, "[INFO] Switched") and state == 0) {
state = 1;
} else if (std.mem.eql(u8, msg, "[INFO] SUCCESS: Scheduler variables preserved") and state == 1) {
state = 2;
}
if (state == 2) {
return true;
}
}
}
///
/// The make function that is called by the builder. This will create the qemu process with the
/// stdout as a Pipe. Then create the read thread to read the logs from the qemu stdout. Then
/// will call the test function to test a specifics part of the OS defined by the test mode.
///
/// Arguments:
/// IN/OUT step: *Step - The step of this step.
///
/// Error: Thread.SpawnError || ChildProcess.SpawnError || Allocator.Error || Error
/// Thread.SpawnError - If there is an error spawning the real logs thread.
/// ChildProcess.SpawnError - If there is an error spawning the qemu process.
/// Allocator.Error.OutOfMemory - If there is no more memory to allocate.
/// Error.TestFailed - The error if the test failed.
///
fn make(step: *Step) (Thread.SpawnError || ChildProcess.SpawnError || Allocator.Error || Error)!void {
const self = @fieldParentPtr(RuntimeStep, "step", step);
// Create the qemu process
self.os_proc = try ChildProcess.init(self.argv, self.builder.allocator);
defer self.os_proc.deinit();
self.os_proc.stdout_behavior = .Pipe;
self.os_proc.stdin_behavior = .Inherit;
self.os_proc.stderr_behavior = .Inherit;
try self.os_proc.spawn();
// Start up the read thread
var thread = try Thread.spawn(self, read_logs);
// Call the testing function
const res = self.test_func(self);
// Now kill our baby
_ = try self.os_proc.kill();
// Join the thread
thread.wait();
// Free the rest of the queue
while (self.msg_queue.get()) |node| {
self.builder.allocator.free(node.data);
self.builder.allocator.destroy(node);
}
// If the test function returns false, then fail the build
if (!res) {
return Error.TestFailed;
}
}
///
/// This is to only be used in the read logs thread. This reads the stdout of the qemu process
/// and stores each line in the queue.
///
/// Arguments:
/// IN/OUT self: *RuntimeStep - Self.
///
fn read_logs(self: *RuntimeStep) void {
const stream = self.os_proc.stdout.?.reader();
// Line shouldn't be longer than this
const max_line_length: usize = 1024;
while (true) {
const line = stream.readUntilDelimiterAlloc(self.builder.allocator, '\n', max_line_length) catch |e| switch (e) {
error.EndOfStream => {
// When the qemu process closes, this will return a EndOfStream, so can catch and return so then can
// join the thread to exit nicely :)
return;
},
else => {
std.debug.warn("Unexpected error: {}\n", .{e});
unreachable;
},
};
// put line in the queue
var node = self.builder.allocator.create(Node) catch unreachable;
node.* = Node.init(line);
self.msg_queue.put(node);
}
}
///
/// This return a log message from the queue in the order it would appear in the qemu process.
/// The line will need to be free with allocator.free(line) then finished with the line.
///
/// Arguments:
/// IN/OUT self: *RuntimeStep - Self.
///
/// Return: []const u8
/// A log line from the queue.
///
/// Error: Error
/// error.QueueEmpty - If the queue is empty for more than the timeout, this will be thrown.
///
fn get_msg(self: *RuntimeStep) Error![]const u8 {
var i: usize = 0;
while (i < queue_timeout) : (i += 1) {
if (self.msg_queue.get()) |node| {
defer self.builder.allocator.destroy(node);
return node.data;
}
std.time.sleep(std.time.ns_per_ms);
}
return Error.QueueEmpty;
}
///
/// Create a runtime step with a specific test mode.
///
/// Argument:
/// IN builder: *Builder - The builder. This is used for the allocator.
/// IN test_mode: TestMode - The test mode.
/// IN qemu_args: [][]const u8 - The qemu arguments used to create the OS process.
///
/// Return: *RuntimeStep
/// The Runtime step pointer to add to the build process.
///
pub fn create(builder: *Builder, test_mode: TestMode, qemu_args: [][]const u8) *RuntimeStep {
const runtime_step = builder.allocator.create(RuntimeStep) catch unreachable;
runtime_step.* = RuntimeStep{
.step = Step.init(.Custom, builder.fmt("Runtime {}", .{@tagName(test_mode)}), builder.allocator, make),
.builder = builder,
.msg_queue = Queue.init(),
.os_proc = undefined,
.argv = qemu_args,
.test_func = switch (test_mode) {
.None => print_logs,
.Initialisation => test_init,
.Panic => test_panic,
.Scheduler => test_scheduler,
},
};
return runtime_step;
}
};