pluto/src/kernel/arch/x86/paging.zig
2020-12-07 23:15:35 +00:00

695 lines
28 KiB
Zig

const std = @import("std");
const testing = std.testing;
const expectEqual = testing.expectEqual;
const expect = testing.expect;
const log = std.log.scoped(.x86_paging);
const builtin = @import("builtin");
const is_test = builtin.is_test;
const panic = @import("../../panic.zig").panic;
const build_options = @import("build_options");
const mock_path = build_options.arch_mock_path;
const arch = if (is_test) @import(mock_path ++ "arch_mock.zig") else @import("arch.zig");
const isr = @import("isr.zig");
const MemProfile = @import("../../mem.zig").MemProfile;
const tty = @import("../../tty.zig");
const mem = @import("../../mem.zig");
const vmm = @import("../../vmm.zig");
const pmm = @import("../../pmm.zig");
const multiboot = @import("multiboot.zig");
const Allocator = std.mem.Allocator;
/// An array of directory entries and page tables. Forms the first level of paging and covers the entire 4GB memory space.
pub const Directory = packed struct {
/// The directory entries.
entries: [ENTRIES_PER_DIRECTORY]DirectoryEntry,
/// The tables allocated for the directory. This is ignored by the CPU.
tables: [ENTRIES_PER_DIRECTORY]?*Table,
/// The allocator used to allocate and free tables
allocator: *std.mem.Allocator,
///
/// Free the state occupied by the directory. It will be unusable afterwards.
///
/// Arguments:
/// IN self: *Self - The directory to deinitialise.
///
pub fn deinit(self: *@This()) void {
for (self.tables) |table| {
if (table) |t| {
self.allocator.destroy(t);
}
}
}
///
/// Copy the page directory. Changes to one copy will not affect the other
///
/// Arguments:
/// IN self: *const Directory - The directory to copy
///
/// Return: Directory
/// The copy
///
pub fn copy(self: *const Directory) Directory {
return self.*;
}
};
/// An array of table entries. Forms the second level of paging and covers a 4MB memory space.
const Table = packed struct {
/// The table entries.
entries: [ENTRIES_PER_TABLE]TableEntry,
};
/// An entry within a directory. References a single page table.
/// Bit 0: Present. Set if present in physical memory.
/// When not set, all remaining 31 bits are ignored and available for use.
/// Bit 1: Writable. Set if writable.
/// Bit 2: User. Set if accessible by user mode.
/// Bit 3: Write through. Set if write-through caching is enabled.
/// Bit 4: Cache disabled. Set if caching is disabled for this table.
/// Bit 5: Accessed. Set by the CPU when the table is accessed. Not cleared by CPU.
/// Bit 6: Zero.
/// Bit 7: Page size. Set if this entry covers a single 4MB page rather than 1024 4KB pages.
/// Bit 8: Ignored.
/// Bits 9-11: Ignored and available for use by kernel.
/// Bits 12-31: The 4KB aligned physical address of the corresponding page table.
/// Must be 4MB aligned if the page size bit is set.
const DirectoryEntry = u32;
/// An entry within a page table. References a single page.
/// Bit 0: Present. Set if present in physical memory.
/// When not set, all remaining 31 bits are ignored and available for use.
/// Bit 1: Writable. Set if writable.
/// Bit 2: User. Set if accessible by user mode.
/// Bit 3: Write through. Set if write-through caching is enabled.
/// Bit 4: Cache disabled. Set if caching is disabled for this page.
/// Bit 5: Accessed. Set by the CPU when the page is accessed. Not cleared by CPU.
/// Bit 6: Dirty. Set by the CPU when the page has been written to. Not cleared by the CPU.
/// Bit 7: Zero.
/// Bit 8: Global. Set if the cached address for this page shouldn't be updated when cr3 is changed.
/// Bits 9-11: Ignored and available for use by the kernel.
/// Bits 12-31: The 4KB aligned physical address mapped to this page.
const TableEntry = u32;
/// Each directory has 1024 entries
const ENTRIES_PER_DIRECTORY: u32 = 1024;
/// Each table has 1024 entries
const ENTRIES_PER_TABLE: u32 = 1024;
/// There are 1024 entries per directory with each one covering 4KB
const PAGES_PER_DIR_ENTRY: u32 = 1024;
/// There are 1 million pages per directory
const PAGES_PER_DIR: u32 = ENTRIES_PER_DIRECTORY * PAGES_PER_DIR_ENTRY;
/// The bitmasks for the bits in a DirectoryEntry
const DENTRY_PRESENT: u32 = 0x1;
const DENTRY_WRITABLE: u32 = 0x2;
const DENTRY_USER: u32 = 0x4;
const DENTRY_WRITE_THROUGH: u32 = 0x8;
const DENTRY_CACHE_DISABLED: u32 = 0x10;
const DENTRY_ACCESSED: u32 = 0x20;
const DENTRY_ZERO: u32 = 0x40;
const DENTRY_4MB_PAGES: u32 = 0x80;
const DENTRY_IGNORED: u32 = 0x100;
const DENTRY_AVAILABLE: u32 = 0xE00;
const DENTRY_PAGE_ADDR: u32 = 0xFFFFF000;
/// The bitmasks for the bits in a TableEntry
const TENTRY_PRESENT: u32 = 0x1;
const TENTRY_WRITABLE: u32 = 0x2;
const TENTRY_USER: u32 = 0x4;
const TENTRY_WRITE_THROUGH: u32 = 0x8;
const TENTRY_CACHE_DISABLED: u32 = 0x10;
const TENTRY_ACCESSED: u32 = 0x20;
const TENTRY_DIRTY: u32 = 0x40;
const TENTRY_ZERO: u32 = 0x80;
const TENTRY_GLOBAL: u32 = 0x100;
const TENTRY_AVAILABLE: u32 = 0xE00;
const TENTRY_PAGE_ADDR: u32 = 0xFFFFF000;
/// The number of bytes in 4MB
pub const PAGE_SIZE_4MB: usize = 0x400000;
/// The number of bytes in 4KB
pub const PAGE_SIZE_4KB: usize = PAGE_SIZE_4MB / 1024;
/// The kernel's page directory. Should only be used to map kernel-owned code and data
pub var kernel_directory: Directory align(@truncate(u29, PAGE_SIZE_4KB)) = Directory{ .entries = [_]DirectoryEntry{0} ** ENTRIES_PER_DIRECTORY, .tables = [_]?*Table{null} ** ENTRIES_PER_DIRECTORY, .allocator = &mem.fixed_buffer_allocator.allocator };
///
/// Convert a virtual address to an index within an array of directory entries.
///
/// Arguments:
/// IN virt: usize - The virtual address to convert.
///
/// Return: usize
/// The index into an array of directory entries.
///
inline fn virtToDirEntryIdx(virt: usize) usize {
return virt / PAGE_SIZE_4MB;
}
///
/// Convert a virtual address to an index within an array of table entries.
///
/// Arguments:
/// IN virt: usize - The virtual address to convert.
///
/// Return: usize
/// The index into an array of table entries.
///
inline fn virtToTableEntryIdx(virt: usize) usize {
return (virt / PAGE_SIZE_4KB) % ENTRIES_PER_TABLE;
}
///
/// Set the bit(s) associated with an attribute of a table or directory entry.
///
/// Arguments:
/// val: *align(1) u32 - The entry to modify
/// attr: u32 - The bits corresponding to the attribute to set
///
inline fn setAttribute(val: *align(1) u32, attr: u32) void {
val.* |= attr;
}
///
/// Clear the bit(s) associated with an attribute of a table or directory entry.
///
/// Arguments:
/// val: *align(1) u32 - The entry to modify
/// attr: u32 - The bits corresponding to the attribute to clear
///
inline fn clearAttribute(val: *align(1) u32, attr: u32) void {
val.* &= ~attr;
}
///
/// Map a page directory entry, setting the present, size, writable, write-through and physical address bits.
/// Clears the user and cache disabled bits. Entry should be zeroed.
///
/// Arguments:
/// IN virt_addr: usize - The start of the virtual space to map
/// IN virt_end: usize - The end of the virtual space to map
/// IN phys_addr: usize - The start of the physical space to map
/// IN phys_end: usize - The end of the physical space to map
/// IN attrs: vmm.Attributes - The attributes to apply to this mapping
/// IN allocator: *Allocator - The allocator to use to map any tables needed
/// OUT dir: *Directory - The directory that this entry is in
///
/// Error: vmm.MapperError || Allocator.Error
/// vmm.MapperError.InvalidPhysicalAddress - The physical start address is greater than the end
/// vmm.MapperError.InvalidVirtualAddress - The virtual start address is greater than the end or is larger than 4GB
/// vmm.MapperError.AddressMismatch - The differences between the virtual addresses and the physical addresses aren't the same
/// vmm.MapperError.MisalignedPhysicalAddress - One or both of the physical addresses aren't page size aligned
/// vmm.MapperError.MisalignedVirtualAddress - One or both of the virtual addresses aren't page size aligned
/// Allocator.Error.* - See Allocator.alignedAlloc
///
fn mapDirEntry(dir: *Directory, virt_start: usize, virt_end: usize, phys_start: usize, phys_end: usize, attrs: vmm.Attributes, allocator: *Allocator) (vmm.MapperError || Allocator.Error)!void {
if (phys_start > phys_end) {
return vmm.MapperError.InvalidPhysicalAddress;
}
if (virt_start > virt_end) {
return vmm.MapperError.InvalidVirtualAddress;
}
if (phys_end - phys_start != virt_end - virt_start) {
return vmm.MapperError.AddressMismatch;
}
if (!std.mem.isAligned(phys_start, PAGE_SIZE_4KB) or !std.mem.isAligned(phys_end, PAGE_SIZE_4KB)) {
return vmm.MapperError.MisalignedPhysicalAddress;
}
if (!std.mem.isAligned(virt_start, PAGE_SIZE_4KB) or !std.mem.isAligned(virt_end, PAGE_SIZE_4KB)) {
return vmm.MapperError.MisalignedVirtualAddress;
}
const entry = virtToDirEntryIdx(virt_start);
var dir_entry = &dir.entries[entry];
// Only create a new table if one hasn't already been created for this dir entry.
// Prevents us from overriding previous mappings.
var table: *Table = undefined;
if (dir.tables[entry]) |tbl| {
table = tbl;
} else {
// Create a table and put the physical address in the dir entry
table = &(try allocator.alignedAlloc(Table, @truncate(u29, PAGE_SIZE_4KB), 1))[0];
@memset(@ptrCast([*]u8, table), 0, @sizeOf(Table));
const table_phys_addr = vmm.kernel_vmm.virtToPhys(@ptrToInt(table)) catch |e| blk: {
// When testing this will fail, but that's ok
if (!is_test) panic(@errorReturnTrace(), "Failed getting the physical address for a page table: {}\n", .{e});
break :blk 0;
};
dir_entry.* |= DENTRY_PAGE_ADDR & table_phys_addr;
dir.tables[entry] = table;
}
setAttribute(dir_entry, DENTRY_PRESENT);
setAttribute(dir_entry, DENTRY_WRITE_THROUGH);
clearAttribute(dir_entry, DENTRY_4MB_PAGES);
if (attrs.writable) {
setAttribute(dir_entry, DENTRY_WRITABLE);
} else {
clearAttribute(dir_entry, DENTRY_WRITABLE);
}
if (attrs.kernel) {
clearAttribute(dir_entry, DENTRY_USER);
} else {
setAttribute(dir_entry, DENTRY_USER);
}
if (attrs.cachable) {
clearAttribute(dir_entry, DENTRY_CACHE_DISABLED);
} else {
setAttribute(dir_entry, DENTRY_CACHE_DISABLED);
}
// Map the table entries within the requested space
var virt = virt_start;
var phys = phys_start;
var tentry = virtToTableEntryIdx(virt);
while (virt < virt_end) : ({
virt += PAGE_SIZE_4KB;
phys += PAGE_SIZE_4KB;
tentry += 1;
}) {
try mapTableEntry(&table.entries[tentry], phys, attrs);
}
}
///
/// Unmap a page directory entry, clearing the present bits.
///
/// Arguments:
/// IN virt_addr: usize - The start of the virtual space to map
/// IN virt_end: usize - The end of the virtual space to map
/// OUT dir: *Directory - The directory that this entry is in
///
/// Error: vmm.MapperError
/// vmm.MapperError.NotMapped - If the region being unmapped wasn't mapped in the first place
///
fn unmapDirEntry(dir: *Directory, virt_start: usize, virt_end: usize) vmm.MapperError!void {
const entry = virtToDirEntryIdx(virt_start);
var dir_entry = &dir.entries[entry];
const table = dir.tables[entry] orelse return vmm.MapperError.NotMapped;
var addr = virt_start;
while (addr < virt_end) : (addr += PAGE_SIZE_4KB) {
var table_entry = &table.entries[virtToTableEntryIdx(addr)];
if (table_entry.* & TENTRY_PRESENT != 0) {
clearAttribute(table_entry, TENTRY_PRESENT);
} else {
return vmm.MapperError.NotMapped;
}
}
}
///
/// Map a table entry by setting its bits to the appropriate values.
/// Sets the entry to be present, writable, kernel access, write through, cache enabled, non-global and the page address bits.
///
/// Arguments:
/// OUT entry: *align(1) TableEntry - The entry to map. 1 byte aligned.
/// IN phys_addr: usize - The physical address to map the table entry to.
///
/// Error: PagingError
/// PagingError.UnalignedPhysAddresses - If the physical address isn't page size aligned.
///
fn mapTableEntry(entry: *align(1) TableEntry, phys_addr: usize, attrs: vmm.Attributes) vmm.MapperError!void {
if (!std.mem.isAligned(phys_addr, PAGE_SIZE_4KB)) {
return vmm.MapperError.MisalignedPhysicalAddress;
}
setAttribute(entry, TENTRY_PRESENT);
if (attrs.writable) {
setAttribute(entry, TENTRY_WRITABLE);
} else {
clearAttribute(entry, TENTRY_WRITABLE);
}
if (attrs.kernel) {
clearAttribute(entry, TENTRY_USER);
} else {
setAttribute(entry, TENTRY_USER);
}
if (attrs.writable) {
setAttribute(entry, TENTRY_WRITE_THROUGH);
} else {
clearAttribute(entry, TENTRY_WRITE_THROUGH);
}
if (attrs.cachable) {
clearAttribute(entry, TENTRY_CACHE_DISABLED);
} else {
setAttribute(entry, TENTRY_CACHE_DISABLED);
}
clearAttribute(entry, TENTRY_GLOBAL);
setAttribute(entry, TENTRY_PAGE_ADDR & phys_addr);
}
///
/// Map a virtual region of memory to a physical region with a set of attributes within a directory.
/// If this call is made to a directory that has been loaded by the CPU, the virtual memory will immediately be accessible (given the proper attributes)
/// and will be mirrored to the physical region given. Otherwise it will be accessible once the given directory is loaded by the CPU.
///
/// This call will panic if mapDir returns an error when called with any of the arguments given.
///
/// Arguments:
/// IN virtual_start: usize - The start of the virtual region to map
/// IN virtual_end: usize - The end (exclusive) of the virtual region to map
/// IN physical_start: usize - The start of the physical region to map to
/// IN physical_end: usize - The end (exclusive) of the physical region to map to
/// IN attrs: vmm.Attributes - The attributes to apply to this mapping
/// IN/OUT allocator: *Allocator - The allocator to use to allocate any intermediate data structures required to map this region
/// IN/OUT dir: *Directory - The page directory to map within
///
/// Error: vmm.MapperError || Allocator.Error
/// * - See mapDirEntry
///
pub fn map(virtual_start: usize, virtual_end: usize, phys_start: usize, phys_end: usize, attrs: vmm.Attributes, allocator: *Allocator, dir: *Directory) (Allocator.Error || vmm.MapperError)!void {
var virt_addr = virtual_start;
var phys_addr = phys_start;
var virt_next = std.math.min(virtual_end, std.mem.alignBackward(virt_addr, PAGE_SIZE_4MB) + PAGE_SIZE_4MB);
var phys_next = std.math.min(phys_end, std.mem.alignBackward(phys_addr, PAGE_SIZE_4MB) + PAGE_SIZE_4MB);
var entry_idx = virtToDirEntryIdx(virt_addr);
while (entry_idx < ENTRIES_PER_DIRECTORY and virt_addr < virtual_end) : ({
virt_addr = virt_next;
phys_addr = phys_next;
virt_next = std.math.min(virtual_end, virt_next + PAGE_SIZE_4MB);
phys_next = std.math.min(phys_end, phys_next + PAGE_SIZE_4MB);
entry_idx += 1;
}) {
try mapDirEntry(dir, virt_addr, virt_next, phys_addr, phys_next, attrs, allocator);
}
}
///
/// Unmap a virtual region of memory within a directory so that it is no longer accessible.
///
/// Arguments:
/// IN virtual_start: usize - The start of the virtual region to unmap
/// IN virtual_end: usize - The end (exclusive) of the virtual region to unmap
/// IN/OUT dir: *Directory - The page directory to unmap within
///
/// Error: Allocator.Error || vmm.MapperError
/// vmm.MapperError.NotMapped - If the region being unmapped wasn't mapped in the first place
///
pub fn unmap(virtual_start: usize, virtual_end: usize, dir: *Directory) (Allocator.Error || vmm.MapperError)!void {
var virt_addr = virtual_start;
var virt_next = std.math.min(virtual_end, std.mem.alignBackward(virt_addr, PAGE_SIZE_4MB) + PAGE_SIZE_4MB);
var entry_idx = virtToDirEntryIdx(virt_addr);
while (entry_idx < ENTRIES_PER_DIRECTORY and virt_addr < virtual_end) : ({
virt_addr = virt_next;
virt_next = std.math.min(virtual_end, virt_next + PAGE_SIZE_4MB);
entry_idx += 1;
}) {
try unmapDirEntry(dir, virt_addr, virt_next);
if (virt_next - virt_addr >= PAGE_SIZE_4MB) {
clearAttribute(&dir.entries[entry_idx], DENTRY_PRESENT);
}
}
}
///
/// Called when a page fault occurs. This will log the CPU state and control registers.
///
/// Arguments:
/// IN state: *arch.CpuState - The CPU's state when the fault occurred.
///
fn pageFault(state: *arch.CpuState) u32 {
log.info("State: {X}\n", .{state});
var cr0 = asm volatile ("mov %%cr0, %[cr0]"
: [cr0] "=r" (-> u32)
);
var cr2 = asm volatile ("mov %%cr2, %[cr2]"
: [cr2] "=r" (-> u32)
);
var cr3 = asm volatile ("mov %%cr3, %[cr3]"
: [cr3] "=r" (-> u32)
);
var cr4 = asm volatile ("mov %%cr4, %[cr4]"
: [cr4] "=r" (-> u32)
);
log.info("CR0: 0x{X}, CR2: 0x{X}, CR3: 0x{X}, CR4: 0x{X}\n", .{ cr0, cr2, cr3, cr4 });
@panic("Page fault");
}
///
/// Initialise x86 paging, overwriting any previous paging set up.
///
/// Arguments:
/// IN mem_profile: *const MemProfile - The memory profile of the system and kernel
///
pub fn init(mem_profile: *const MemProfile) void {
log.info("Init\n", .{});
defer log.info("Done\n", .{});
isr.registerIsr(isr.PAGE_FAULT, if (build_options.test_mode == .Initialisation) rt_pageFault else pageFault) catch |e| {
panic(@errorReturnTrace(), "Failed to register page fault ISR: {}\n", .{e});
};
const dir_physaddr = @ptrToInt(mem.virtToPhys(&kernel_directory));
asm volatile ("mov %[addr], %%cr3"
:
: [addr] "{eax}" (dir_physaddr)
);
const v_end = std.mem.alignForward(@ptrToInt(mem_profile.vaddr_end), PAGE_SIZE_4KB);
switch (build_options.test_mode) {
.Initialisation => runtimeTests(v_end),
else => {},
}
}
fn checkDirEntry(entry: DirectoryEntry, virt_start: usize, virt_end: usize, phys_start: usize, attrs: vmm.Attributes, table: *Table, present: bool) void {
expectEqual(entry & DENTRY_PRESENT, if (present) DENTRY_PRESENT else 0);
expectEqual(entry & DENTRY_WRITABLE, if (attrs.writable) DENTRY_WRITABLE else 0);
expectEqual(entry & DENTRY_USER, if (attrs.kernel) 0 else DENTRY_USER);
expectEqual(entry & DENTRY_WRITE_THROUGH, DENTRY_WRITE_THROUGH);
expectEqual(entry & DENTRY_CACHE_DISABLED, if (attrs.cachable) 0 else DENTRY_CACHE_DISABLED);
expectEqual(entry & DENTRY_4MB_PAGES, 0);
expectEqual(entry & DENTRY_ZERO, 0);
var tentry_idx = virtToTableEntryIdx(virt_start);
var tentry_idx_end = virtToTableEntryIdx(virt_end);
var phys = phys_start;
while (tentry_idx < tentry_idx_end) : ({
tentry_idx += 1;
phys += PAGE_SIZE_4KB;
}) {
const tentry = table.entries[tentry_idx];
checkTableEntry(tentry, phys, attrs, present);
}
}
fn checkTableEntry(entry: TableEntry, page_phys: usize, attrs: vmm.Attributes, present: bool) void {
expectEqual(entry & TENTRY_PRESENT, if (present) TENTRY_PRESENT else 0);
expectEqual(entry & TENTRY_WRITABLE, if (attrs.writable) TENTRY_WRITABLE else 0);
expectEqual(entry & TENTRY_USER, if (attrs.kernel) 0 else TENTRY_USER);
expectEqual(entry & TENTRY_WRITE_THROUGH, TENTRY_WRITE_THROUGH);
expectEqual(entry & TENTRY_CACHE_DISABLED, if (attrs.cachable) 0 else TENTRY_CACHE_DISABLED);
expectEqual(entry & TENTRY_ZERO, 0);
expectEqual(entry & TENTRY_GLOBAL, 0);
expectEqual(entry & TENTRY_PAGE_ADDR, page_phys);
}
test "setAttribute and clearAttribute" {
var val: u32 = 0;
const attrs = [_]u32{ DENTRY_PRESENT, DENTRY_WRITABLE, DENTRY_USER, DENTRY_WRITE_THROUGH, DENTRY_CACHE_DISABLED, DENTRY_ACCESSED, DENTRY_ZERO, DENTRY_4MB_PAGES, DENTRY_IGNORED, DENTRY_AVAILABLE, DENTRY_PAGE_ADDR };
for (attrs) |attr| {
const old_val = val;
setAttribute(&val, attr);
std.testing.expectEqual(val, old_val | attr);
}
for (attrs) |attr| {
const old_val = val;
clearAttribute(&val, attr);
std.testing.expectEqual(val, old_val & ~attr);
}
}
test "virtToDirEntryIdx" {
expectEqual(virtToDirEntryIdx(0), 0);
expectEqual(virtToDirEntryIdx(123), 0);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB - 1), 0);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB), 1);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB + 1), 1);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB * 2), 2);
expectEqual(virtToDirEntryIdx(PAGE_SIZE_4MB * (ENTRIES_PER_DIRECTORY - 1)), ENTRIES_PER_DIRECTORY - 1);
}
test "virtToTableEntryIdx" {
expectEqual(virtToTableEntryIdx(0), 0);
expectEqual(virtToTableEntryIdx(123), 0);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB - 1), 0);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB), 1);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB + 1), 1);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB * 2), 2);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB * (ENTRIES_PER_TABLE - 1)), ENTRIES_PER_TABLE - 1);
expectEqual(virtToTableEntryIdx(PAGE_SIZE_4KB * (ENTRIES_PER_TABLE)), 0);
}
test "mapDirEntry" {
var allocator = std.testing.allocator;
var dir: Directory = Directory{ .entries = [_]DirectoryEntry{0} ** ENTRIES_PER_DIRECTORY, .tables = [_]?*Table{null} ** ENTRIES_PER_DIRECTORY, .allocator = allocator };
defer dir.deinit();
const attrs = vmm.Attributes{ .kernel = false, .writable = false, .cachable = false };
vmm.kernel_vmm = try vmm.VirtualMemoryManager(arch.VmmPayload).init(PAGE_SIZE_4MB, 0xFFFFFFFF, allocator, arch.VMM_MAPPER, undefined);
defer vmm.kernel_vmm.deinit();
{
const phys: usize = 0 * PAGE_SIZE_4MB;
const phys_end: usize = phys + PAGE_SIZE_4MB;
const virt: usize = 1 * PAGE_SIZE_4MB;
const virt_end: usize = virt + PAGE_SIZE_4MB;
try mapDirEntry(&dir, virt, virt_end, phys, phys_end, attrs, allocator);
const entry_idx = virtToDirEntryIdx(virt);
const entry = dir.entries[entry_idx];
const table = dir.tables[entry_idx] orelse unreachable;
checkDirEntry(entry, virt, virt_end, phys, attrs, table, true);
}
{
const phys: usize = 7 * PAGE_SIZE_4MB;
const phys_end: usize = phys + PAGE_SIZE_4MB;
const virt: usize = 8 * PAGE_SIZE_4MB;
const virt_end: usize = virt + PAGE_SIZE_4MB;
try mapDirEntry(&dir, virt, virt_end, phys, phys_end, attrs, allocator);
const entry_idx = virtToDirEntryIdx(virt);
const entry = dir.entries[entry_idx];
const table = dir.tables[entry_idx] orelse unreachable;
checkDirEntry(entry, virt, virt_end, phys, attrs, table, true);
}
}
test "mapDirEntry returns errors correctly" {
var allocator = std.testing.allocator;
var dir = Directory{ .entries = [_]DirectoryEntry{0} ** ENTRIES_PER_DIRECTORY, .tables = undefined, .allocator = allocator };
const attrs = vmm.Attributes{ .kernel = true, .writable = true, .cachable = true };
testing.expectError(vmm.MapperError.MisalignedVirtualAddress, mapDirEntry(&dir, 1, PAGE_SIZE_4KB + 1, 0, PAGE_SIZE_4KB, attrs, allocator));
testing.expectError(vmm.MapperError.MisalignedPhysicalAddress, mapDirEntry(&dir, 0, PAGE_SIZE_4KB, 1, PAGE_SIZE_4KB + 1, attrs, allocator));
testing.expectError(vmm.MapperError.AddressMismatch, mapDirEntry(&dir, 0, PAGE_SIZE_4KB, 1, PAGE_SIZE_4KB, attrs, allocator));
testing.expectError(vmm.MapperError.InvalidVirtualAddress, mapDirEntry(&dir, 1, 0, 0, PAGE_SIZE_4KB, attrs, allocator));
testing.expectError(vmm.MapperError.InvalidPhysicalAddress, mapDirEntry(&dir, 0, PAGE_SIZE_4KB, 1, 0, attrs, allocator));
}
test "map and unmap" {
var allocator = std.testing.allocator;
var dir = Directory{ .entries = [_]DirectoryEntry{0} ** ENTRIES_PER_DIRECTORY, .tables = [_]?*Table{null} ** ENTRIES_PER_DIRECTORY, .allocator = allocator };
defer dir.deinit();
vmm.kernel_vmm = try vmm.VirtualMemoryManager(arch.VmmPayload).init(PAGE_SIZE_4MB, 0xFFFFFFFF, allocator, arch.VMM_MAPPER, undefined);
defer vmm.kernel_vmm.deinit();
const phys_start: usize = PAGE_SIZE_4MB * 2;
const virt_start: usize = PAGE_SIZE_4MB * 4;
const phys_end: usize = PAGE_SIZE_4MB * 4;
const virt_end: usize = PAGE_SIZE_4MB * 6;
const attrs = vmm.Attributes{ .kernel = true, .writable = true, .cachable = true };
map(virt_start, virt_end, phys_start, phys_end, attrs, allocator, &dir) catch unreachable;
var virt = virt_start;
var phys = phys_start;
while (virt < virt_end) : ({
virt += PAGE_SIZE_4MB;
phys += PAGE_SIZE_4MB;
}) {
const entry_idx = virtToDirEntryIdx(virt);
const entry = dir.entries[entry_idx];
const table = dir.tables[entry_idx] orelse unreachable;
checkDirEntry(entry, virt, virt + PAGE_SIZE_4MB, phys, attrs, table, true);
}
unmap(virt_start, virt_end, &dir) catch unreachable;
virt = virt_start;
phys = phys_start;
while (virt < virt_end) : ({
virt += PAGE_SIZE_4MB;
phys += PAGE_SIZE_4MB;
}) {
const entry_idx = virtToDirEntryIdx(virt);
const entry = dir.entries[entry_idx];
const table = dir.tables[entry_idx] orelse unreachable;
checkDirEntry(entry, virt, virt + PAGE_SIZE_4MB, phys, attrs, table, false);
}
}
test "copy" {
// Create a dummy page dir
var dir: Directory = Directory{ .entries = [_]DirectoryEntry{0} ** ENTRIES_PER_DIRECTORY, .tables = [_]?*Table{null} ** ENTRIES_PER_DIRECTORY, .allocator = std.testing.allocator };
dir.entries[0] = 123;
dir.entries[56] = 794;
var table0 = Table{ .entries = [_]TableEntry{654} ** ENTRIES_PER_TABLE };
var table56 = Table{ .entries = [_]TableEntry{987} ** ENTRIES_PER_TABLE };
dir.tables[0] = &table0;
dir.tables[56] = &table56;
var dir2 = dir.copy();
const dir_slice = @ptrCast([*]const u8, &dir)[0..@sizeOf(Directory)];
const dir2_slice = @ptrCast([*]const u8, &dir2)[0..@sizeOf(Directory)];
testing.expectEqualSlices(u8, dir_slice, dir2_slice);
// Changes to one should not affect the other
dir2.tables[1] = &table0;
dir.tables[0] = &table56;
testing.expect(!std.mem.eql(u8, dir_slice, dir2_slice));
}
// The labels to jump to after attempting to cause a page fault. This is needed as we don't want to cause an
// infinite loop by jumping to the same instruction that caused the fault.
extern var rt_fault_callback: *u32;
extern var rt_fault_callback2: *u32;
var faulted = false;
var use_callback2 = false;
fn rt_pageFault(ctx: *arch.CpuState) u32 {
faulted = true;
// Return to the fault callback
ctx.eip = @ptrToInt(&if (use_callback2) rt_fault_callback2 else rt_fault_callback);
return @ptrToInt(ctx);
}
fn rt_accessUnmappedMem(v_end: u32) void {
use_callback2 = false;
faulted = false;
// Accessing unmapped mem causes a page fault
var ptr = @intToPtr(*u8, v_end);
var value = ptr.*;
// Need this as in release builds the above is optimised out so it needs to be use
log.emerg("FAILURE: Value: {}\n", .{value});
// This is the label that we return to after processing the page fault
asm volatile (
\\.global rt_fault_callback
\\rt_fault_callback:
);
if (!faulted) {
panic(@errorReturnTrace(), "FAILURE: Paging should have faulted\n", .{});
}
log.info("Tested accessing unmapped memory\n", .{});
}
fn rt_accessMappedMem(v_end: u32) void {
use_callback2 = true;
faulted = false;
// Accessing mapped memory doesn't cause a page fault
var ptr = @intToPtr(*u8, v_end - PAGE_SIZE_4KB);
var value = ptr.*;
asm volatile (
\\.global rt_fault_callback2
\\rt_fault_callback2:
);
if (faulted) {
panic(@errorReturnTrace(), "FAILURE: Paging shouldn't have faulted\n", .{});
}
log.info("Tested accessing mapped memory\n", .{});
}
pub fn runtimeTests(v_end: u32) void {
rt_accessUnmappedMem(v_end);
rt_accessMappedMem(v_end);
}