PKIl and TLS

Project 2, EITF55 Security, 2024

Ben Smeets and Karim Khalil
Dept. of Electrical and Information Technology, Lund University, Sweden

Last revised by Christian Gehrmann on
2025-01-20 at 16:32

What you will learn

In this project you will

« Study PKI certificates for servers and clients.

 Setup a PKl infrastructure, and key enroliment.

» Learn to use OpenSSL for handling certificate sign requests.
 Learn about Java TLS and the use of KeyStore and TrustStore.
+ Learn about differences in how stacks use TLS.

* Intercept and analyse TLS data traffic.

Basic level
Computer Security |_— - Web Security Data Security
(EITA25) (EITFO5) (EITF55)
Advanced Computer Advanced Web
) . " Cryptography
Security Security (EDINOZ)
| (EITN50) " (EITN41)

Not given in 2023!

Secure Systems . Advancedh
Engineering ryFE)lt'l?lirzasp y
(EITP20) ()

Project2 Assignment - PKl and TLS CONTENTS

Contents
1__General instructions| 3
EI CheckliST o oo 3
O " »] 7 6
3.1 CAce atel ... e 6
.2 rver and Clien riificatel 7
[3.3 _Secure Storage for Keys and Certificates| 10
4 _The TLS Server and Client 11
4.1 ImplementationindJaval 11
4.2 Implementation in Python| 18
[6TLS sockets and https| 22
[6 Analysis of TLS traffic| 22
7/ _How To 23
7.1 Install OpenSSL] e 23
|7.2 Javakeytool 23
I/.3 Installand use Wiresharkl o 24
7.4 Debug| e 26
[7.5 Force use of specific CIpher suies| v v i 26
[8__If everything fails| 26
9 Assignment questions| 28
9.1 Question Al. e e e e e 28
9.2 QuestionB|. 28
9.3 Question Cl. e e e e 29
9.4 QuestionDl. 29
9.4.1 Java Implementation Questions| 29
[9.4.2 Python Implementation Questions| 30
9.5 QuestionEf. 30
9.6 Question E1| L e e 30
9.7 Question FE2 e 31

Project2 Assignment - PKI and TLS General instructions

1 General instructions

There are a number of exercises that guide your project work and you should use the exercises to
structure your report. A list of tasks that should be included in your project report is given in section[9]
While writing your report:

+ Give clear indications where you put your answers to the assignments.

» For convenience name the report xyz_Project2_eitf55, where xyz corresponds to your group id.

* You should submit the reports electronically in pdf or word format and use the subject "Project2_EITF55"
in the email that contains the report. Send it using the email address(es) specified on the course
home page.

DO READ this entire document before you start coding and testing. The document contains useful
information that will save you time if you are not familiar with the tools to generate certificates. Many of
your previous year colleague students admitted that after reading the guides that are given here they
got their program working correctly. In this instruction you will find several commands that are useful
for debugging your implementation, configuration and listing the contents of your keystores.

BEFORE YOU ASK FOR HELP you should collect the help information that is stated in some of the
exercises. Failing to do so may cause you to be sent back to gather this information first.

1.1 Checklist

You should submit

Item | Description
1 Report with your group number and names on it.
2 Printout of your certificates and include in the report.
3 Code of your Server and Client (as text file, not pdf) using server authentication only.
4 Code of your Server and Client (as text file, not pdf) using server and
client authentication AND specific cipher suite selection.
5 Answers to the assignment questions in section|§[

Project2 Assignment - PKI and TLS Introduction

2 Introduction

TLS is a one of the most used secure communication protocols. Every modern engineer working with
data communication, automation, embedded systems, and web design should know how to setup and
use TLS. In this project you will go through the main steps to have TLS support in an application and
how to configure the required keys. One can use the TLS protocol directly in a program via a secure
socket interface and web applications make use of TLS via the https protocol. TLS is derived from
SSL and still today people speak of a "(secure) SSL connection" even if the underlying protocol is
TLS. One of the nice features of TLS, is that integrated in the protocol is an authentication and session
key agreement protocol. There are several options how to use TLS. TLS version 1.3 is to be used and
not TLS 1.2 or older. This will limit some of the choices further on. In the course lectures you can
read more about this. Here, in this project, we will only consider TLS in conjunction with RSA-based
server and client authentication. You already studied RSA in Project 1. In TLS, the RSA algorithm
has several roles. It is used in the authentication of the keys and it is used in the establishment of the
session keys. The latter is, in principle, a simple step consisting of the encryption of a random value
by the connecting client using the server’s public key. By the properties of the RSA public-key crypto
scheme it is only the server than that can decrypt this random value. From the random value the client
and the server will compute their shared session key that will protect the subsequent data they will
exchange. To perform the authentication of the RSA keys TLS assumes that the keys are organised
in what is referred to as a Public Key Infrastructure (PKI). A PKI is usually a tree-like structure of
approved keys where the data containers of the approved public keys are called certificates. To verify
a certificate in the tree one uses the certificate on the previous level (closer to the root) of the tree, see

Figure[T]

cert 1 cert 2 cert3
cert 11 cert12 cert 31
cert 311

Figure 1: Example of PKI: tree organization with CA and other certificates.

The certificate at the root of the tree (lacking a previous level) is crafted such that it verifies it self. It
is often called the root certificate (some even call it the root key). The root certificate is different from
the the subsequent certificates in that it cannot be cryptographically verified. Instead the entity that
needs to trust the root key must secure the use of the root key by other means. To create the PKI one
establishes first a public and private key whose public key will be used in the root certificate. The entity
that does this and who will keep the secret corresponding to the root certificate public key is called the
Certificate Authority or just CA. The root certificate is therefore also called a CA certificate. The CA
will issue certificates by creating signed (with its private key) approvals of other public keys. This step
is called enrollment of a public key into the PKI.

In TLS, a server can be setup to use a self-signed certificate. However the client that connects to a

Project2 Assignment - PKI and TLS Introduction

P
cert1 ~_ cert 2 cert 3
‘. checks
cert11 cert12* cert 31
cert 311

Figure 2: Complete certificate chain in PKI tree.

server and receives such a self-signed certificate cannot determine if it can trust this certificate unless
it has been told beforehand, that is the client must have stored the certificate in some manner in its
trusted registry. A more clever way to let the client check if it can trust a server certificate is to use
server certificates that are signed by a CA. Then the client only needs to store the CA certificate
and can use this CA certificate to verify the server certificate sent in the TLS protocol. During the
TLS handshake the server will present to the client the certificates the client needs to perform the
verification. If the CA signs the server certificate then the verification is simple. Check the server
certificate with the CA certificate. In general the verification involves a chain of verifications starting
with the CA certificate and traversing on the PKI tree down to the server certificate, see Figure[2] The
list of certificates that are processed is referred to as "a complete certificate chain".

CA certificates are used in the verification of other certificates. The CA, client, and server’s private key
and the certificate for the complete certificate chain must be stored securely with password protection
against access to the private key. We will be using PKCS12 format for the storage of server and client
keys and certificates.

Thus the task to setup a TLS server-client implementation and a PKI consists of the following steps:

Generate RSA key pair for CA

Construct a (self-signed) CA certificate

Generate a RSA key pair for the server

Request CA to issue a certificate for the server public key

Server stores its private key in a PKCS12 file format

6. Client stores its private key, client certificate, and the CA certificate in PKCS12 file format

A A

Now if TLS is used in a manner that that the server can authenticate the client, then the client must
have a so-called client certificate. Similar to server certificates it is rational to have client certificate
to be certificated and issued by a CA (or another entity in the PKI tree). The server can use the CA
certificate to verify the client certificate. To support, this the previous steps have to be modified slightly.
Generate RSA key pair for CA

Construct (self-signed) CA certificate

Generate RSA key pair the server

Request CA to issue certificate for the server public key

Generate RSA key pair the client

o s~ b=

Project2 Assignment - PKl and TLS Setting up the PKI

6. Request CA to issue certificate for the client public key
7. Server stores its private key, client certificate, and the CA certificate in PKCS12 file format
8. Client stores its private key, client certificate, and the CA certificate in PKCS12 file format

In the subsequent sections of the project exercises you will be guided through the above steps and
the construction of a simple client and server that communicate via TLS. You have the choice of
implementing the TLS server and client in Python or Java. You will study the certificates that are
generated so you will get a better understanding of their content. Furthermore, by intercepting the
data traffic between the client and server you will see what kind of packages the TLS protocol sends.

Note: The check of the signatures in a certificate chain is the most crucial step of verifying a cer-
tificate of a server or client, this must always be preformed in PKI. However, a certificate contains
in most cases more information. A very common attribute in a server certificate is a so-called SAN-
list. SAN stands for Subject Alternative Name and the SAN entries, for example, one can designate
the DNS names for which the certificate is valid. via a SAN list one can create a server certificate
that holds for a server that serves my.serveri.com or for my.server2.com, in the SAN entries are

my.serverl.com, my.server2.com. One must be careful before relying on the use of these en-
tries as it is not always clear that these entries in a certificate are checked in an implementation. The
HTTPS specification demands that implementations should check DNS names. In this project we use
socket connections and there are many additional verifications of HTTPS that are not carried out (you
have to add them programmatically!).

3 Setting up the PKI

3.1 CA certificate

First we must create our CA. Here we use a program library/tool called OpenSSL. OpenSSL consists of
a many parts and here we will use those parts for generating RSA keys and the creation and dumping
(in text form) of certificates.

Exercise 1 Check that you have OpenSSL installed. See the "How To" section. Determine the speed
of your machine by typing in a command prompt "openssl speed". OpenSSL starts to run the algo-
rithms it currently has and shows how fast it goes. You might want to just interrupt this process as it
will really take a long while to complete.

Before calling help: If the openssl command does not function make a dump of your
computer’s environment variables, e.g. in a command prompt under windows you write set
> env.txt, which allows you to inspect the environment variables in the file env.txt. Of course
you should run this in a directory where you have write permissions. In a UNIX type machine
use env instead of set.

We are now ready to create a CA key and certificate. OpenSSL offers various ways to do that. We use
a method where we first create the RSA and afterwards the certificate. In this project we are happy
with a 2048 bit RSA key and a CA certificate that lasts 3650 days (about 10 years). As you will see in
the instructions you have to provide some information that will be embedded into the certificate. You
are rather free to change the input to what you would like it to be.

To generate the RSA key type
openssl genrsa -aesl28 -out rootCA.key 2048

You will be asked to provide a password to protect your RSA private key. The protection is through the
AES algorithm in 128 bit mode using CBC. If you omit the "-aes128" argument in the command there
will be no password protection of the RSA private key.

Next we create the self-signed certificate

Project2 Assignment - PKl and TLS Setting up the PKI

openssl req -x509 -new -key rootCA.key -days 3560 -out rootCA.pem

Enter pass phrase for rootCA.key: <enter the one you used before when creating the key>
You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]: SE

State or Province Name (full name) [Some-State]: Scania

Locality Name (eg, city) []: Lund

Organization Name (eg, company) [Internet Widgits Pty Ltd]: LU
Organizational Unit Name (eg, section) []: Education

Common Name (e.g. server FQDN or YOUR name) []: Demo CA

Email Address []: ca@demoland.se

The certificate is encoded in a text format called PEM. You can open the rootCA.pem file in your
favourite editor. Another way to look at the content of the rootCA.pem file is by using the openssl
command

openssl x509 -text -in rootCA.pem

Exercise 2 Create a directory where you can store your keys and intermediate results and open a
command prompt in that directory. Generate a 2048 bit RSA key and construct a CA certificate for
your CA using the previously mentioned procedures. Use the openssl x509 -text -in <yourCA pem file
name> to list the contents of your certificate

1. What is the serial number of your certificate ?

2. Who is subject and who was the issuer of the certificate?

3. What algorithm is used for signing ?

4. What algorithm is used for hashing ?

5. What is the public exponent (as decimal number)?

6. What values do appear as X509v3 extensions? What is the basic constraint?

Before calling help: It is best you created your working directory not as a sub directory of a
system or OpenSSL installation directory. List the place from which you run your OpenSSL
commands.

3.2 Server and Client Certificate

We will continue to use OpenSSL to generate the Server and Client certificates. However we will use
the Java keytool to view the PKCS121 certificates. For implementation in Java we will use keytool
to store the CA certificate in the default location for the JVM, while this is not necessary and one can
create its own TrustStore location, it is common practice to store trusted CA’s in cacerts. See the "How
To" section in this document.

Below you see an example how to generate a server certificate for the server. At this point it is
recommended to create a directory for the storage of the server cryptographic files, you should create
a separate directory when you are creating the client’s cryptographic file as well.

In some setups the server’s IP address or dns name, must be specified for TLS to accept it as server
certificate for your server. The entry yourdomain can be localhost or the FQDN of the server, e.g.
www.mywebserver.se. The entry is important when using https as the implementation might check
that this entry matches the connection. In our examples that is not necessary.

Project2 Assignment - PKl and TLS Setting up the PKI

openssl genpkey -aesl28 -algorithm RSA -out server_key.pem -pkeyopt
rsa_keygen_bits:2048

In the above call to openssl we also created a server private RSA key used "server" as password.
We store the keys in a PEM file. PEM stands for "Privacy Enhanced Mail," is a file format that is
widely used for encoding cryptographic keys and X.509 digital certificates. You can see the textual
presentation of the key via openssl rsa -in server_key.pem -text with -text options specifies
the output to be in text representation. But as we know what we have done thus far is not enough to
make TLS work. We need also to get a certificate for this key. First we must generate a certificate
sign request that we send to the CA. Next our CA has to process this request. Here we use again
OpenSSL. Below we give the two steps

openssl req -new -key server_key.pem -out server_csr.pem

Enter pass phrase for server_key.pem:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:SE

State or Province Name (full name) [Some-State]:Scania

Locality Name (eg, city) []:Lund

Organization Name (eg, company) [Internet Widgits Pty Ltd]:LU
Organizational Unit Name (eg, section) []:Education

Common Name (e.g. server FQDN or YOUR name) []:server.demoland.se

Email Address []:server@demoland.se

Please enter the following ’extra’ attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

Now we shall ask openssl to sign the created certificate with the rootCA certificate and key.

The openssl command deserves some explanation. In particular the arguments -extfile server_v3.txt
and -set_serial 1. The former instructs openssl to read data from the file server_v3.txt that con-
tains Certificate version 3 extensions and the latter sets the serial number of the certificate. Omitting

the -extfile argument will result in a version 1 certificate even if the CA certificate itself is a version

3 certificate. The entries in the extension file have to reflect the purpose of the certificate expressed

in the basic constraints. You need to create a file with the nameserver_v3.txt and client_v3.txt
inside each respective directory.For a server you need to enter the following in server_v3.txt

authorityKeyIdentifier=keyid,issuer
basicConstraints=CA:FALSE

keyUsage = keyAgreement, keyEncipherment, digitalSignature
subjectAltName = Q@alt_names

[alt_names]

DNS.1 = localhost

For a client certificate you need to enter the following in client_v3.txt

authorityKeyIdentifier=keyid,issuer
basicConstraints=CA:FALSE

keyUsage = digitalSignature, nonRepudiation, dataEncipherment
subjectAltName = Qalt_names

Project2 Assignment - PKl and TLS Setting up the PKI

[alt_names]
DNS.1 = localhost

The use of extensions is a science by itself and their usefulness depends on the certificate verification
engine that is used when implementing TLS. The latter implies that different TLS implementations may
react differently on the same certificate, so be warned. People frequently forget the extension file and
thus get a v1 certificate instead of a v3. As an alternative to the -extfile argument one can use the
openssl.cfg file to force that the processing of the certificate sign request results in a v3 certificate.
We will not study this here and we do not recommend you to go this way unless you know what you
are doing. We conclude by showing two useful commands; the first one to print certificates and the
second to print a certificate sign request

Note you need to specify a location of the stored rootCA file

openssl x509 -req -CA ../rootCA.pem -CAkey ../rootCA.key -in server_csr.pem
-out server_cert.pem -days 365 -extfile server_v3.txt -ser_serial 1

After this we will create a PKCS12 file that would include the server private key, the server certificate
and the CA certificate. You will be prompted to enter the pass phrase for the server key, as well enter
a pass phrase for the sever PKCS12 file, we will use the same password ’serverﬂ

Note: We only need the CA certificate inside the PKCS12 file if the server is intended to to mutual TLS
authentication of the client certificate. Usually it is the client application that includes the CA certificate
in order to verify the server during the TLS handshake.

openssl pkcsl2 -export -out server.pl2 -inkey server_key.pem -in server_cert.pem
-certfile ../rootCA.pem

To view the content of the PKCS12 file and the certificate file, you can enter these command. Inspect
the file and see how many certificate are included.

openssl x509 -in server_cert.pem -text
openssl pkcsl2 -in server.pl2 -nodes

Having gone through all these steps it is time to actually create your server and client certificate

Exercise 3 Create a directories for the cryptographic files. Prepare a server_v3.txt and a
client_v3.txt file containing the proper extensions as shown above. Generate RSA private keys of
size 2048 bits for the server and client. The certificate that you generate should be valid for 365 days.
Be mindful to enumerate the serial of the certificates.

1. Use the commands detailed before to generate your server and client certificate. Store these
certificates and their keys so you know where they are. Do not forget to increment the serial
number of the certificates. We do this here by hand (but one could let OpenSSL do this for you
by managing a file where the serial number is stored).

2. Discuss the purpose and features of PKCS12 format in the context of PKI? Discuss it's advan-
tages and why it is widely used?

3. Why should the entries CN= for each certificate be unique?

4. Investigate the server certificate server_cert.pem and identify the "X509v3 Authority Key
Identifier". Where have you seen this value before?

5. Repeat the generation of the server certificate so you will get a v1 certificate instead of a v3. Do
you need to generate a new private key for this?

6. Make prints of the certificates and add them as appendices to your report.

7. Generate also a server certificate that will expire after one day. We will use it later to test if the
client really checks the expiry data.

"The CA signing command in split over two lines. You should enter the command on one single line.
2The PKCS12 command in split over two lines. You should enter the command on one single line.

Project2 Assignment - PKl and TLS Setting up the PKI

8. Does the CA for the client and server certificates have to be the same? Motivate your answer.

Before calling help: Store the printouts in a file that you can show your project assistant.

Exercise 4 Note that the entries CN for the CA and server certificates differ.
Why must all certificates in the PKI have a different entry?

Before calling help: Remember this task when you proceed!

Exercise 5 In the previous tasks you likely used passwords at several occasions. Reflect on their
purpose and your choices. What are the consequences of using all these passwords when operating
a TLS server and client?

3.3 Secure Storage for Keys and Certificates

Private key files (*.key) certificates (*.cer), and PKCS12 (.p12) files should be stored in a secure loca-
tion. This location should not be publicly accessible and should be protected by appropriate operating
system-level security measures.

Usually CA cryptographic files are stored in a separate infrastructure that is protected by many mea-
sures. A compromise of CA key or certificate means that every certificate that is generated by the CA
is invalid or untrusted.

Exercise 6 For the purpose of illustration in this course, we have created the CA locally to generate
signed certificates for the server and client. lllustrate what are the best practice for securing the CA
keys and certificates?

For the server, those file should be stored in a directory that’s only accessible by the server application
or user running the server. rootCA.pem should be stored if the server is also verifying client certificates.

The client should store its keys and certificates in a secure location, not accessible by any user except
the client application. rootCA.pem should be stored in a location accessible by the client to verify the
server certificate when it connects to it.

For file permissions in Unix/Linux system, file permissions are set by chmod. permissions 400 or 600
could be used to set permissions for read access rights, or read/write access rights.

Keys are the most sensitive information therefore they should be only allowed to be read and no
write or execute privilege allowed. certificates could be accessed by anyone as they are not private.
However, no one should be able to modify them except their owner.

chmod 600 server.key
chmod 644 server.cer
chmod 444 rootCA.cer

The directory where the files are stored, should also be protected with limited access. If the client
application is a web application, a choice of a directoty outside the web directory is prefarrable. Set
permission level on sever and client directoty as follows.

chmod 700 /path/to/secure_dir

For Windows OS, the OS handles file permissions differently, using Access Control Lists (ACLs). You
can set these using the File Explorer GUI or the icacls command in the command prompt.

10

Project2 Assignment - PKI and TLS The TLS Server and Client

Right-click on the key file (e.g., server.key) and select Properties.
Go to the Security tab.

Click on Edit to change permissions.

Set groups and users that allowed to access and view the file.

Exercise 7 Apply the given instruction to set correct privileges. Set file and directory permissions for
CA, server, and client Keys and certificate. Motivate your choice for permissions. Include file and
folder permissions to your report.

4 The TLS Server and Client

In this section you will implement a TLS server-client application. You have the choice to do that either
in Java or python. Each section has its own set of exercises, you should only attempt to solve the
exercises in the section related to the programming language you decided to do the implementation
in. In your Assignment report, include only the answers related to section you chose.

4.1 Implementation in Java

Java TLS engine will use the PKCS12 file to extract the keys and certificate to use for the authentication
and key establishment. The next step involves not only that the keys and certificates, it also involves
the verification of the certificates. Towards this end Java maintains a TrustStore. The TrustStore should
contain the CA certificate.

Normally a Java run time has already a truststore. The default location for this file is:
<jre location>\lib\security\cacerts

The default keystore password for the cacerts file is "changeit”. While system administrators should
change the access rights and the password for this cacerts file but the password changeit will probably
work on developer or testing machines.

On windows you need to run this command in an elevated (administrator) command window to have
the permission to write the updated truststore file.

Keytool is a Java tool used to create, view and import keys into the JVM environment. Keytool is
usually located inside <jre location>\bin\.

You can import the CA certificate we generated to this truststore using keytool as follows:

keytool -import -alias eda62btest -file rootCA.pem -trustcacerts
-keystore "+<jre location>\lib\security\cacerts"

To display the content of this keystore on a 64bit windows machine:

keytool -list -v -keystore "+<jre location>\lib\security\cacerts"
Verify the Certificate is added on On Unix/Linux Machine:

keytool -list -cacerts -storepass changeit | grep myCA

On Windows machine:

keytool -list -cacerts -storepass changeit | Select-String ’myca’

You can also create your custom TrustStore, in such case your Java code need to know the path for
the custom TrustStore to extract the CA certificate.

You can create a custom TrustStore as follows:

keytool -import -file rootCA.pem -alias myCA -trustcacerts
-keystore truststore.jks -storepass TrustPass

11

Project2 Assignment - PKI and TLS The TLS Server and Client

Exercise 8 How is the Truststore file secured against modifications?

Keytool could also be used to display the content of our PKCS12 file by this command:

keytool -list -v -keystore client.pl2 -storetype PKCS12

Exercise 9 When you list the content of, for example, the server PKCS12 file. You see an entry
indicating the certificate chain length of the server key, e.g.

Entry type: PrivateKeyEntry
Certificate chain length: 2

Why must this chain length be larger than 1 as this point?

We come back to this chain length question in another task.

12

Project2 Assignment - PKI and TLS The TLS Server and Client

In this section you construct a small server and client using secure sockets in Java. You have to
implement a server that writes the text input sent by the client on the screen and echoes it back to the
client which prints the text received back from the server. Look through the JSSE reference document
and the example code at the bottom [2], see also [3]. As an starting example of a simple server and
client you can use

//
//Sample server using sslsockets
import java.io.*;
import java.net.*;
import java.security.x*;
import javax.net.ssl.*;
public class server {
private static final int PORT = 8043; // likely this port number is ok to use
// Server PKCS12 file path
private static final String PKCS12Location = "<path>/server.pl2";
private static final String PKCS12Password = "server"; // Update if password changed
public static void main (String[] args) throws Exception {
boolean keepRunning = true;
// First we need to load a keystore
char[] passphrase = PKCS12Password.toCharArray() ;
KeyStore ks = KeyStore.getInstance("PKCS12");
try (FileInputStream fis = new FileInputStream(PKCS12Location)) {
ks.load(fis, passphrase);

}

// Initialize a KeyManagerFactory with the KeyStore

KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509") ;

kmf.init(ks, passphrase);

// KeyManagers from the KeyManagerFactory

KeyManager[] keyManagers = kmf.getKeyManagers() ;

//Adding custom TrustStore

//System.setProperty("javax.net.ssl.trustStore","<pathtoyour>/truststore.pl2");

//System.setProperty("javax.net.ssl.trustStorePassword","changeit") ;

//tmf .init (ts);

// Obtain the default TrustManagers for the system’s truststore (cacerts)
TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
tmf.init ((KeyStore) null); // Use the system’s truststore ’cacerts’
TrustManager[] trustManagers = tmf.getTrustManagers();

// Create an SSLContext to run TLSv1.3 and initialize it with

SSLContext context = SSLContext.getInstance("TLSv1.3");

context.init(keyManagers, null, new SecureRandom());

SSLServerSocketFactory ssf = context.getServerSocketFactory() ;

// Create server socket
try (SSLServerSocket ss = (SSLServerSocket) ssf.createServerSocket(PORT)) {
//ss.setNeedClientAuth(true); // Require client authentication
System.out.println("Server started and waiting for connectiomns...");
// Continuously accept new connections
while (keepRunning) {
try (SSLSocket s = (SSLSocket) ss.accept();
BufferedReader in = new
BufferedReader (new InputStreamReader (s.getInputStream()))) {
System.out.println("Client connected.");
// Read and process input from the client
String line;
while ((line = in.readLine()) != null) {
System.out.println(line);
}

13

Project2 Assignment - PKI and TLS The TLS Server and Client

} catch (SocketException | EOFException e) {
System.out.println("Client disconnected abruptly.");
keepRunning = false;

} catch (IOException e) {
e.printStackTrace() ;

}

}

} catch (IOException e) {
e.printStackTrace() ;

} finally {
System.out.println("Server stopped.");

14

Project2 Assignment - PKI and TLS The TLS Server and Client

Note the use of port 8043, the password "server", and that we first wait for a connection. The client
code is equally simple. We chose the use of 'client’ as the pass phrase to the client PKCS12 file.

//
//Sample client using sslsockets
import java.io.x;
import java.net.x*;
import java.security.x*;
import javax.net.ssl.x*;
public class client {
private static final String HOST = "localhost";
private static final int PORT = 8043;
// Client PKCS12 file path
private static final String PKCS12Location = "<path>/client.pl2";
private static final String PKCS12Password = "client"; // Update if password changed
//Add custom TrustStore password if not using cacerts
//private static final String TSPassword = "changeit";

public static void main(String[] args) throws Exception {
char[] passphrase_ks = PKCS12Password.toCharArray() ;
//Adding custom TrustStore

//char[] passphrase_ts = CACERTSPassword.toCharArray() ;
//KeyStore ts = KeyStore.getInstance("PKCS12");
//ts.load(new FileInputStream("/pathtoyour/"truststore.pl2"), passphrase_ts);
//TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
//tmf .init (ts);
//TrustManager [] trustManagers = tmf.getTrustManagers();
// Add code for Keystore

/] 77
SSLContext context = SSLContext.getInstance("TLSv1.3");
//TrustManager (2nd argu) is null to use the default trust manager cacerts
//To use custom TrustStore, 2nd argument changes to ’trustManagers’
//context.init(??, ??, ??7); //Add correct arguments
SSLSocketFactory sf = context.getSocketFactory();
try (SSLSocket s = (SSLSocket) sf.createSocket(HOST,PORT)) {
OutputStream toserver = s.getOutputStream() ;
toserver.write("\nConnection established.\n\n".getBytes());
System.out.print ("\nConnection established.\n\n");
int inCharacter=0;
inCharacter = System.in.read();
try {
while (inCharacter != >7?)
{
toserver.write(inCharacter);
toserver.flush();
inCharacter = System.in.read();
}
}catch (SocketException | EOFException e) {
System.out.print("\nClient Closing.\n\n");
e.printStackTrace() ;
toserver.close();
s .shutdownOutput () ;

s.close();

} catch (I0Exception e) {

e.printStackTrace() ;

}
}catch (IOException e) {
System.out.println("Cannot estabilish connection to server.");
e.printStackTrace() ;

15

Project2 Assignment - PKI and TLS The TLS Server and Client

} finally {
System.out.println("client stopped.");
}

}
//

Observe that we assume that we run the server on the same machine as the client program is running.
This is convenient but you can of course place the server at another location. However you must be
sure that the the client accepts the hostname information from the server in its certificate. This is so
per default.

Exercise 10 Construct a TLS echo server and a matching client where the server receives text input
from the client sent via TLS, prints the received data on the screen and then echos the received data
back to the client. The client collects all the data the server returns in a buffer and prints this buffer
after it closes the connection with the server. Test your client and server.

Before calling help: Make the programs run from the command line. This works for Win-
dows, OSx, and Linux operating systems. Run the commands from two distinct directories
that are not sub directories of system resources or OpenSSL installation files.

It is convenient to construct bat/shell script files for running the server and client. In that way
you reduce the typing you have to do. Especially if want to enter arguments, for example
needed for debugging.

Exercise 11 Show how the server would do mutual TLS authentication of the client certificate?
You can do this by changing the 2nd argument for
context.init (keyManagers, null, new SecureRandom()); from null to trustManagers

Note: To run the client and server programs it might be a good idea to export your programs as jar
files using, for example, the Eclipse export function. After the export you can start the program on the
command line, e.g., java -jar myjarfile.jar.

Exercise 12 What happens if you in the previous assignment use a server certificate that has expired?
What error codes you will see at the server and the client?.

Exercise 13 We previously noted that the keystore of the server had chain length 2 indicating that
in the keystore we have both the server certificate and the ca certificate. One might wonder is it
really needed for the server to have this CA certificate in its keystore after we have imported its server
certificate into it? It is the client that will need to use the CA root certificate in the chain validation and
there is no security gain in having the server send it too in the TLS handshake. We try our the remove
the CA cert from the keystore and see if we still get a TLS connection. To remove the CA certificate
enter:

keytool -delete -alias myCA -keystore serverKeystore. jks

Start the server again and try to connect with your client.

In general, when using other SW stacks that implement TLS, the requirement of the rootCA cert to
be included in the TLS handshake is sometimes a must. So Java and python solutions may work
differently here!

Now we have a setup where only the client checks the server certificate. But we can add support for

16

Project2 Assignment - PKI and TLS The TLS Server and Client

working with client certificates by the following modifications to the server code

// in server: force use of client auth and add truststore
SSLSocket s = (SSLSocket)ss.accept();
s.setNeedClientAuth(true) ;

// in client: Add keystore for its private key

We must use more keystores and truststores. One can also indicate what keystores/trustores to use
on the command line. For example

java -Davax.net.ssl.keyStore=serverKeyStore. jks
-Djavax.net.ssl.keyStorePassword=123456
-Djavax.net.ssl.trustStore=truststore.jks -jar tlsserver.jar

17

Project2 Assignment - PKI and TLS

The TLS Server and Client

4.2 Implementation in Python

In this section you construct a small server and client using secure sockets in python. You have to
implement a server that writes the text input sent by the client on the screen and echoes it back to the
client which prints the text received back from the server. As an starting example of a simple server
and client you can use

import
import
import
import
import

os
ssl
socket
tempfile
threading

from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.serialization.pkcs12 import \

load_key_and_certificates

Configuration
SERVER_ADDRESS = ’localhost’
KEY_ALIAS = ’serverdomain’
SERVER_PORT
PKCS12_
PKCS12_PASSWORD = ’server’
def start_tls_server(address, port, pkcsl2_path, pkcsl2_password):
cert_path, key_path, ca_path = None, None, None

8043
PATH = ’<path>/server.pl2’ # Update the path to PKCS12 file

try:

pl2_password_bytes = pkcsl2_password.encode(’utf-8’)
with open(pkcsl12_path, ’rb’) as f:
private_key, certificate, additional_certificates = \
load_key_and_certificates(f.read(), pl2_password_bytes)
Extract the private key and certificate in PEM format
server_key = private_key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.PKCS8, #Format for private key in pem
encryption_algorithm=serialization.NoEncryption()
)
server_cert = certificate.public_bytes(serialization.Encoding.PEM)
ca_cert = additional_certificates[0] .public_bytes(serialization.Encoding.PEM) \
if additional_certificates else None
Create a temporary file for the server certificate and key
with (tempfile.NamedTemporaryFile(delete=False) as cert_file,
tempfile.NamedTemporaryFile (delete=False) as key_file,
tempfile.NamedTemporaryFile(delete=False) as ca_file):
cert_file.write(server_cert)
cert_path = cert_file.name
key_file.write(server_key)
key_path = key_file.name
Load the CA certificate for client authentication, when needed
if ca_cert:
ca_file.write(ca_cert)
ca_path = ca_file.name

Create an SSL context
context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
context.load_cert_chain(certfi1e=cert_path, keyfile=key_path)
if ca_cert:

context.load_verify_locations(cafile=ca_path)
else:

raise RuntimeError("CA certificate not found")
#Change this to CERT_REQUIRED to enable mutual TLS

18

Project2 Assignment - PKI and TLS The TLS Server and Client

context.verify_mode = ssl.CERT_NONE
with socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) as sock:
sock.bind((address, port))
sock.listen(1)
print(f"Server listening on {address}:{port}")
with context.wrap_socket(sock, server_side=True) as ssock:
conn, addr = ssock.accept()
with conn:
print (f"Connected by {addr}")
while True:
data = conn.recv(1024)
if not data:
break
message = data.decode()
print (f"Received message: {messagel}")
conn.sendall(data) # Echoing back the received message
except Exception as e:
print (f"An error occurred: {e}")
finally:
Clean up the temporary files
for path in [cert_path, key_path, ca_path]:
if path and os.path.exists(path):
try:
os.remove (path)
except Exception as e:
print (f"Error deleting temporary file {path}: {e}")
def run_server():
start_tls_server (SERVER_ADDRESS, SERVER_PORT, PKCS12_PATH, PKCS12_PASSWORD)
Run the server in a background thread
thread = threading.Thread(target=run_server, daemon=True)
thread.start ()
thread. join()

19

Project2 Assignment - PKI and TLS The TLS Server and Client

Client code

import os
import ssl
import socket
import tempfile
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.serialization.pkcs12 import \
load_key_and_certificates
Configuration
SERVER_ADDRESS = ’localhost’
SERVER_PORT = 8043
PKCS12_PATH = ’<path>/client.pl2’ # Update the path to PKCS12 file
PKCS12_PASSWORD = ’client’
def start_tls_client(server_address, port, pkcsl2_path, pkcsl2_password):
cert_file, key_file, ca_file = None, None, None
try:
pl2_password_bytes = pkcsl2_password.encode(’utf-8)
with open(pkcs12_path, ’rb’) as f:
private_key, certificate, additional_certificates = \
load_key_and_certificates(f.read(), pl2_password_bytes)
Extract the private key and certificate in PEM format
add code here 77
client_cert = certificate.public_bytes(serialization.Encoding.PEM)
Process additional certificates (usually includes the CA certificate)
ca_cert = additional_certificates[0].public_bytes(serialization.Encoding.PEM) \
if additional_certificates else None
Write the client certificate and key to temporary files
with (tempfile.NamedTemporaryFile(delete=False) as cert_file,
tempfile.NamedTemporaryFile(delete=False) as key_file,
tempfile.NamedTemporaryFile(delete=False) as ca_file):
cert_file.write(client_cert)
cert_path = cert_file.name
key_file.write(client_key)
key_path = key_file.name
if ca_cert:
ca_file.write(ca_cert)
ca_path = ca_file.name
Create an SSL context for a TLS client
context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH)
context.load_cert_chain(certfile=cert_path, keyfile=key_path)
if ca_cert:
context.load_verify_locations(cafile=ca_path)
else:
raise RuntimeError("CA certificate not found")
context.check_hostname = True
received_messages = [] # List to store received messages
with socket.create_connection((server_address, port)) as sock:
with context.wrap_socket(sock, server_hostname=server_address) as ssock:
print("Client connected to server")
while True:
message = input("Enter message to send (or ’exit’ to quit): ")
if message.lower() == ’exit’:
break
ssock.sendall (message.encode())
response = ssock.recv(1024)
received_messages.append(response.decode())# Store received message
print ("Received messages during the session:")

20

Project2 Assignment - PKI and TLS The TLS Server and Client

for msg in received_messages:
print (msg)
except Exception as e:
print(£"An error occurred: {e}")
finally:
Clean up the temporary files
for path in [cert_path, key_path, ca_path]:
if path and os.path.exists(path):
try:
os.remove (path)
except Exception as e:
print (f"Error deleting temporary file {path}: {e}")
start_tls_client (SERVER_ADDRESS, SERVER_PORT, PKCS12_PATH, PKCS12_PASSWORD)

Observe that we assume that we run the server on the same machine as the client program is running.
This is convenient but you can of course place the server at another location. However you must be
sure that the the client accepts the hostname information from the server in its certificate. This is so
per default

Exercise 14 Construct a TLS echo server and a matching client where the server receives text input
from the client sent via TLS, prints the received data on the screen and then echos the received data
back to the client. The client collects all the data the server returns in a buffer and prints this buffer
after it closes the connection with the server. Test your client and server.

Before calling help: Make the programs run from the command line. This works for Win-
dows, OSx, and Linux operating systems. Run the commands from two distinct directories
that are not sub directories of system resources or OpenSSL installation files.

It is convenient to construct bat/shell script files for running the server and client. In that way
you reduce the typing you have to do. Especially if want to enter arguments, for example
needed for debugging.

Exercise 15 What happens if you in the previous assignment use a server certificate that has expired?
What error codes you will see at the server and the client?.

Exercise 16 Go through the following tasks and add your answers in the report. All code need to be
added to the report.

1. You might have noticed that the server and client pass phrases are hard coded in the code
sample. This is not security best practice. Suggest two or more methods that are more efficient
and highlight which of the two that should be most preferable and under which conditions.

2. openssl offers the curl option with s_client -connect "server addr". Explain
how this could used to examine the server certificate chain length.

3. Create a new server certificate as shown earlier, sign it by the root CA. Add it to the server code
to use instead. Re-check the chain length, did it change? Explain your finding and illustrate
why or why not it has not changed. If the chain length does not change, suggest a scenario
where the chain length would increase (you don’t need to do any implementation, search online
to understand the concept of intermediateCA and what are the purpose)

4. Show how the server would do mutual TLS authentication of the client certificate? You can do
this by changing the argument for context .verify_mode

5. Create a new PKCS12 file for the server, this time don'’t include the CA certificate. With mutual
TLS authentication set in the server code, what behaviour do you get? Add your steps for

21

Project2 Assignment - PKI and TLS Analysis of TLS traffic

creating the new PKCS12 file, add a dump of the file, add screen shots of the code output and
highlight what parts of the code you changed to create mutual TLS authentication.

5 TLS sockets and https

The experiments we have done use sockets and specifically secure sockets that use TLS. When using
a browser to contact you back you also use TLS in the https protocol. Are secure sockets and https the
same you might wonder. The simple strict answer is no. The more complicated answer is that secure
sockets lie at the bottom of https so in essence it is TLS we are using but https is an specific application
that adds things on top and as said before https is, for example, more restrictive how certificates are
to be used.

Exercise 17 Start your server again but now you use an browse(Firefox, Safari, Edge, or Chrome) to
connect to your server, e.g. https://localhost:8043. Explain what happens.

Note: Our server will likely crash here which is natural because the browser is not the client our server
can fully handle. But something you see more than just the server crashing.

Exercise 18 Add you CA certificate as trusted root certificate to your browser and repeat the previous
task.

The procedure how to add a root certificate depends on your browser. Search
the internet for the right steps. For example for Firefox these are |https:
// docs. vmware. com/ en/ VMware-Adapter- for-SAP-Landscape-Management/

2.0/ Installation-and-4dministration-Guide- for- VLA-Administrators/
GUID-O0CED691F-79D3-4344-B90D-CD97650C1340. html

6 Analysis of TLS traffic

The TLS protocol runs on top of the TCP layer meaning that the TLS data is sent as TCP packets. We
can look at these packets using a network analyser. To see what is sent via the network interface of
your computer you can use a tool called Wireshark. Wireshark understands many protocols and by
using its filtering capabilities we can zoom in on only the TCP packages, see the "How To" section.

Exercise 19 Let us first consider the server authentication-only case. For TLS1.3, TLS handshake
traffic is encrypted, and we would need to use the TLS session key to decrypt the messages in Wire-
shark. To do this, we need to set an environment variable for the session key at the server side, start
the server application, and then add the session key to Wireshark.

Steps:
- For Linux OS do:

export SSLKEYLOGFILE=/path/to/server/folder/sslkeylog.log
- For Windows OS do this in command line:

set SSLKEYLOGFILE=C:\path\to\server\folder\sslkeylog.log

- Start server application

22

https://docs.vmware.com/en/VMware-Adapter-for-SAP-Landscape-Management/2.0/Installation-and-Administration-Guide-for-VLA-Administrators/GUID-0CED691F-79D3-43A4-B90D-CD97650C13A0.html
https://docs.vmware.com/en/VMware-Adapter-for-SAP-Landscape-Management/2.0/Installation-and-Administration-Guide-for-VLA-Administrators/GUID-0CED691F-79D3-43A4-B90D-CD97650C13A0.html
https://docs.vmware.com/en/VMware-Adapter-for-SAP-Landscape-Management/2.0/Installation-and-Administration-Guide-for-VLA-Administrators/GUID-0CED691F-79D3-43A4-B90D-CD97650C13A0.html
https://docs.vmware.com/en/VMware-Adapter-for-SAP-Landscape-Management/2.0/Installation-and-Administration-Guide-for-VLA-Administrators/GUID-0CED691F-79D3-43A4-B90D-CD97650C13A0.html

Project2 Assignment - PKI and TLS How To

- Use Wireshark to Decrypt Traffic: Open Wireshark and start capturing traffic of the local interface.
Go to Edit > Preferences > Protocols > TLS and specify the path to your sslkeylog.log file. Wireshark
will use the session keys from this file to decrypt TLS traffic for analysis.

Start the client aplication on your machine. Trace the TCP packages on the server’s ports. Identify the
following

» Key exchange method and packets

» The certificate information the server presents to the client. In what order do the certificates
appear?

» Rerun the above but with the server modified so it picks one specific cipher suite. This can be
achieved by the setEnabledCipherSuites method of the SSLSocket.

Now activate client authentication.

Exercise 20 Start Wireshark and activate capturing of the local interface, and then start the server
and the client on your machine. Trace the TCP packages on the servers ports. Identify the following

* Key exchange method and packets

» The certificate information the client presents to the server. In what order do the certificates
appear?

Before calling help: If something here does not work you should read the sections below
on debugging and provide printouts of the programs when debugging is enabled and you
should also present a printout of the keystores that you are using. Check that the certificate
chains in your keystore make sense.

7 How To

7.1 Install OpenSSL

First check if OpenSSL is not already installed on your computer. Open a terminal/command window
and type "openssl". If it gives a new shell prompt where you can enter commands to OpenSSL you
are set. Otherwise you have to install OpenSSL. To install OpenSSL do

Under Windows visit http://slproweb.com/products/Win320penSSL.html| and read the infor-
mation there (also on additional packages that might be needed) and download the 32bit installer
(Win32 OpenSSL v1.1.1i Light) or the 64bit equivalent and install it on your computer. After in-
stallation you need to add the path to the OpenSSL bin directory to you path. After that your path
should look something similar like PATH=C: \Program Files (x86)\MiKTeX 2.9\miktex\bin;
C:\OpenSSL-Win64\bin

Under OS X Nothing to do, it is already there.
Under Ubuntu/Mint sudo apt-get install libssl.

There are also development packages for OpenSSL but we do not need those.

7.2 Java keytool

If you want more information on keytool you should consult [4]. Below we sample some of the informa-
tion fromhttp://www.sslshopper.com/article-most-common- java-keytool-keystore-commands.

23

http://slproweb.com/products/Win32OpenSSL.html
http://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html
http://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html

Project2 Assignment - PKI and TLS How To

html. On Windows a path needs to be added to the keytool bin directory similar to openssl. Prob-
ably something like: PATH=C:\Program Files\Java\jdk-13.0.2\bin Most often your have JDK
installed when you also develop java code. Otherwise the runtime JRE suffices.

Java Keytool Commands for creation of keys/certs

Generate a Java keystore and key pair:
keytool -genkey -alias mydomain -keyalg RSA -keystore keystore.jks -keysize 2048

Generate a certificate signing request (CSR) for an existing Java keystore:
keytool -certreq -alias mydomain -keystore keystore.jks -file mydomain.csr

Import a root or intermediate CA certificate to an existing Java keystore:
keytool -import -trustcacerts -alias root -file myCA.crt -keystore keystore.jks

Import a signed primary certificate to an existing Java keystore:
keytool -import -trustcacerts -alias mydomain -file mydomain.crt -keystore keystore. jks
Java Keytool Commands for Checking

If you need to check the information within a certificate, or Java keystore,
use these commands.

Check a stand-alone certificate:
keytool -printcert -v -file mydomain.crt

Check which certificates are in a Java keystore:
keytool -list -v -keystore keystore. jks

Check a particular keystore entry using an alias:
keytool -list -v -keystore keystore.jks -alias mydomain

Other Java Keytool Commands

Delete a certificate from a Java Keytool keystore:
keytool -delete -alias mydomain -keystore keystore.jks

Change a Java keystore password:
keytool -storepasswd -new new_storepass -keystore keystore.jks

Export a certificate from a keystore:
keytool -export -alias mydomain -file mydomain.crt -keystore keystore.jks

List Trusted CA Certs:
keytool -list -v -keystore $JAVA_HOME/jre/lib/security/cacerts

7.3 Install and use Wireshark

Installing is rather simple

Windows and OS X Goto the download section of http://www.wireshark. org/|there you find im-
ages for your Windows and OS X.

Ubuntu/Mint Depends on what version you are running. It is in the latest app repository. YOU

24

http://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html
http://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html
http://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html
http://www.wireshark.org/

Project2 Assignment - PKI and TLS How To

|/« Capturing from Local Area Connection [Wireshark 1.10.1 (SYN Rev 50926 from /trunk-1.10)]

Fle Edt yew Go Captue Analyze Statistics Telephony Tocls Internals Help

0@ 4mJ BHEE AP DTLIEEB QA A|F
' wireshark: Decode As =]
@ Capturing from Local Area Connection [Wireshark 1.10.1 (S¥NRey 50926 from /trunk-1.10)] Filter: |ip.st Save Fite
Fle Edt Wew Go Copture | Analyze astis Tekphony Tods Intermals Help 1o, 1 Derods Uik | Netmork nanspmt|
. P—— = 709 1 in > 5726
iom o | [osplrr EE QaaQf| @M% % 1~ oot decode Seek =
e Display Filter Macos 778 SoupBInTCP Serv. > &
781 ¢ sery > 6
e [one s o e E o ey >
o hipply o5 Fier X .
[et , 5 TB4 2 SRULOC sery > 6
. e 786 ¢ ssH sery > 6
781 20.0708440102. i3 SEEINE 60 dpkeysary > 64325 [ACK] Se 938 = > ssdp [I
782 20. 5711830192, & HTTR 222 HTTR/1.1 200 oK 940 2 IRt (52-57259) =] ports) s | > ssdp [I
784 20.9715380192. + Speciisd Decodes... TR 60 dpkeysery > 64325 [FIN, AC o412 STANAG 5086 > ssdp [
786 20, 9718520192, TcP 60 dpkeysery » 64325 [AcK] Se 942 = STUN > ssdp [I
028 31.0676260102.% Foloy 1P Sirean e 276 NOTIFY * HTTR/L.1 | SRl
940 31.09683240192.7 Folaw UDP Stream s50P 321 NOTIFY ¥ HTTP/L.1 = a STHCHROPHASOR = 2
941 31.09685860192.1 ssop 312 NOTIFY * HTTR/L.1 ECE g Syneray » ssdp [I
942 31, 96916001927 , SSDP 386 NOTIFY ¥ HTTP/L.1 945 T et | \ =z ssdp [I
943 31.0608340102.7 [* 70 N 206 NOTIFY * HTTR/L.1 946 3 Syslog > ssdp [I
044 31.0700420102, Lo merEenme M| sspe 333 NOTIFY % HTTR/L.1 947 2 > ssdp [I
945 315705040192, 168.1.1 239.255.255.250 SsoP 324 NOTIFY ¥ HITR/L.L = Heln o Aoty | Close | < ssdn [
946 31,9709730192.168.1.1 239.255.255.250 sSOP 388 NOTIFY * HTTP/L.1 SR < ssdn [
047 31.0714280102.168.1.1 230.255.255.250 SSDR 272 NOTIFY * HTTR/L.1
048 31.0718840102.168.1.1 239.255.255.250 SSDR 333 NOTIFY % HTTR/L.1 S Il IT27ER ile, g, il 1L 239.255.255.250 TCP 392 ssdp > ssdp [
949 31.5723220102.168.1.1 239.255.255.250 ssDP 404 NOTIFY * HTTR/L.1 951 31.9732400192.168.1.1 239.255.255.250 TCP 333 ssdp > ssdp [I
950 31,9727920192.168.1.1 239.255.295,250 sSOP 392 NOTIFY * HTTP/L.L 952 31.9737040192.168.1.1 239.255.255.250 TCP 386 s5dp > ssdp [
051 21.0732400102.168.1.1 239.255.255.250 SSDR 233 NOTIFY HTTR/L.1 953 31.9741280192.168.1.1 239.255.255.250 TCP 372 ssdp > ssdp [
gzi gg;iig:gﬁgigiii igig:g::igg S igg WA=/ O HTTPﬁ-i 954 31.9746070192.168.1.1 239.255.255.250 TCP 333 ssdp > ssdp [
. .168.1. .255.255. ssop NOTIFY * HTTR/L.
954 31, 9745070192 168.1.1 239.255.295.250 sSOP 333 NOTIFY * HTTP/L.L EEFEEF W LA LT W 235225 s e SOTeR 402 55 > ssdp)

Figure 3: a) Analyze->Decode As, b) Set TCP and SSL.

SHOULD RUN Wireshark FROM A TERMINAL WINDOW using sudo. If you want to run wire-
shark without sudo do the following: sudo dpkg-reconfigure wireshark-common press the right
arrow and enter for yes. sudo chmod +x /usr/bin/dumpcap you should now be able to run wire-
shark without root but | (=Ben) did not test this well.

It might be a good idea also to download the User’s Guide.

On Windows older versions of Wireshark cannot capture from the loopback interface. Hence you
cannot do a live capture of the data sent between the server and the client if you run both on the
same Windows machine. For our purpose we can partly solve that by using a loopback sniffer called
RawCap . exe which you can download from http://www.netresec.com/7page=RawCapl. Place it in
your work directory and just double klick on it and the program will start and asks you the interface to
perform the capture on. The data that it captures is stored in a file that can be opened by Wireshark.
However the most recent Wireshark version 3.4.2 with its plugins should allow you to monitor the
loopback interface directly.

If you not have worked with Wireshark or similar program before you should play around a bit with
it. For example you could try to log the data when browsing to the Lund University site www.1lu.se,
Especially you should learn how to filter for specific data. An overview of the capture filter syntax can
be found in the Wireshark User’s Guide. Below we show some filters, see also [5] and [6]

Filter only traffic to or from IP address 192.168.1.1:
ip == 192.168.1.1

Capture only from
ip.src == 192.168.1.1

Capture only to
ip.dst == 192.168.1.1

Filter on port(s) and tcp
tcp.port == 8080

Wireshark does understand the SSL/TLS protocol. So it is very handy to let Wireshark do the decoding
of the TCP data for you. Towards this end you select from the menu:Analyze->decode as and then set
the protocol (under Network tab) to TCP and then to SSL, see figures a) and b) in Figure ﬂ

3As you are using TLS 1.2 and 1.3 you need to adjust some setting in wireshark to be able to decrypt the traffic, look at the
Using the (Pre)-Master-Secret section in this link

25

http://www.netresec.com/?page=RawCap
www.lu.se

Project2 Assignment - PKI and TLS REFERENCES

7.4 Debug

When you get an execution error JSSE will print some error messages. Normally you will not easily
understand these. Luckily you can run your program in a debug mode which gives more detailed
information. Do as follows:

java -Djavax.net.debug=all -jar myjar.jar
To get a hexadecimal print of the Handshake messages one can use
java -Djavax.net.debug=ssl:handshake:data -jar myjar.jar

The other options are

- all
- ssl
o record (activate per-record tracing)
plaintext (print hexadecimal content)
o handshake (print Handshake Messages)
data (print hexadecimal content Handshake messages)
verbose (more info than data)
o keygen (show key generation)
o session (show Session activity)
o defaultctx (Standard SSL initialisation)
o sslctx (trace SSLContext)
o sessioncache (trace Session Cache)
o keymanager (trace Keymanager)
0 trustmanager (trace Trustmanager)

7.5 Force use of specific cipher suites

The code below can be added to (server or client ??) to force one or several predetermined cipher
suites.

SSLSocket s = (SSLSocket)ss.accept();
String pickedCiphers[] = {"TLS_AES_128_GCM_SHA256", "TLS_AES_128_CCM_SHA256"};
s.setEnabledCipherSuites(pickedCiphers) ;

Note: The TLSv1.3 specification mentions other cipher suites but they are not all supported in Java
13.

8 If everything fails

If for some reasons you get completely stuck and we ask you to send your code you should send both
client and server code (text not jar or binary) and the keystore(s) and truststore(s) your are using with
their respective passwords so we can try to repeat your problem at our side.

References

[1] Java SE 13 Security Overview, https://docs.oracle.com/en/java/javase/13/security/
java-security-overviewl.html#GUID-2EF91196-D468-4DOF-8FDC-DA2BEA165D10, last ac-
cessed on 2020-03-09.

[2] Java Secure Socket Extension (JSSE) Reference Guide, https://docs.oracle.com/en/java/
javase/13/security/java-secure-socket-extension-jsse-reference-guide.html#
GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345, last accessed on 2020-03-09.

26

https://docs.oracle.com/en/java/javase/13/security/java-security-overview1.html#GUID-2EF91196-D468-4D0F-8FDC-DA2BEA165D10
https://docs.oracle.com/en/java/javase/13/security/java-security-overview1.html#GUID-2EF91196-D468-4D0F-8FDC-DA2BEA165D10
https://docs.oracle.com/en/java/javase/13/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345
https://docs.oracle.com/en/java/javase/13/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345
https://docs.oracle.com/en/java/javase/13/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345

Project2 Assignment - PKI and TLS REFERENCES

[3] JSSE Samples, https://docs.oracle.com/en/java/javase/13/
security/java-secure-socket-extension-jsse-reference-guide.html#
GUID-0573BCE4-05C4-429C-8ECC-3D3D8CA807F4, last accessed on 2020-03-09.

[4] keytool documentation, https://docs.oracle.com/en/java/javase/13/docs/specs/man/
keytool.html, last accessed on 2020-03-09.

[5] Wireshark filtering packets, https://www.wireshark.org/docs/wsug_html_chunked/
ChWorkDisplayFilterSection.html, last accessed on 2020-03-09.

[6] Wireshark capture filters, https://wiki.wireshark.org/CaptureFilters, last accessed on
2020-03-09.

27

https://docs.oracle.com/en/java/javase/13/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-0573BCE4-05C4-429C-8ECC-3D3D8CA807F4
https://docs.oracle.com/en/java/javase/13/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-0573BCE4-05C4-429C-8ECC-3D3D8CA807F4
https://docs.oracle.com/en/java/javase/13/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-0573BCE4-05C4-429C-8ECC-3D3D8CA807F4
https://docs.oracle.com/en/java/javase/13/docs/specs/man/keytool.html
https://docs.oracle.com/en/java/javase/13/docs/specs/man/keytool.html
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkDisplayFilterSection.html
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkDisplayFilterSection.html
https://wiki.wireshark.org/CaptureFilters

Project2 Assignment - PKl and TLS Assignment questions

9 Assignment questions

It is mandatory for you to answer all the questions in this section for the assignment. All values shall
be properly documented and the code used to answer the questions shall be submitted together with
the report and output values you have obtained when solving the assignment questions.

Refer to Section [3.1] for submission instructions.

9.1 Question A

Generate a 2048 bit RSA key and construct a CA certificate for your CA. Use the openssl x509 -text
-in <yourCA pem file name> to list the contents of your certificate.
1. What is the serial number of your certificate ?
Who is subject and who was the issuer of the certificate?
What algorithm is used for signing ?
What algorithm is used for hashing ?
What is the public exponent (as decimal number)?
6. What values do appear as X509v3 extensions? What is the basic constraint?

S A

Refer to section[31]for instructions.

9.2 Question B

Prepare a server_v3.txt and a client_v3. txt file containing the proper extensions.
Generate server and client RSA keys of size 2048 bits.

Generate your server and client certificate. Store these certificates and their keys so you know where
they are. Do not forget to increment the serial number of the certificates. We do this here by hand
(but one could let OpenSSL do this for you by managing a file where the serial number is stored). The
certificate that you generate should be valid for 365 days and should use SHA1 as hash algorithm.

1. Use the commands detailed before to generate your server and client certificate. Store these
certificates and their keys so you know where they are. Do not forget to increment the serial
number of the certificates. We do this here by hand (but one could let OpenSSL do this for you
by managing a file where the serial number is stored).

2. Discuss the purpose and features of PKCS12 format in the context of PKI? Discuss it's advan-
tages and why it has been widely used?

3. Why should the entries CN= for each certificate be unique?

4. Investigate the server certificate server_cert.pem and identify the "X509v3 Authority Key
Identifier". Where have you seen this value before?

5. Repeat the generation of the server certificate so you will get a v1 certificate instead of a v3. Do
you need to generate a new private key for this?

6. Generate also a server certificate that will expire after one day. We will use it later to test if the
client really checks the expiry data.

7. Does the CA for the client and server certificates have to be the same? Motivate your answer.

8. given that you have inspected the CA, server, and client certificates, Why must all certificates in
the PKI have a different entry?

9. In the previous tasks you likely used passwords at several occasions. Reflect on their purpose
and your choices. What are the consequences of using all these passwords when operating a
TLS server and client?

10. Make prints of the certificates and add them as appendices to your report.

Refer to section [3.2) for instructions. Make sure you correctly add the server and client certificates in
the correct file.

28

Project2 Assignment - PKl and TLS Assignment questions

9.3 Question C

In this question we will look into the secure storage of keys and certificates

1. For the purpose of illustration in this course, we have created the CA locally to generate signed
certificates for the server and client. lllustrate what are the best practice for securing the CA
keys and certificates?

2. Set file and directory permissions for CA, server, and client Keys and certificate. Motivate your
choice for permissions. Include the steps you done to apply file and folder permissions to your
report as well as screenshots of the resulted permissions.

Refer to section[3.3l

9.4 Question D

Construct a TLS echo server and a matching client where the server receives text input from the client
sent via TLS, prints the received data on the screen and then echos the received data back to the
client. The client collects all the data the server returns in a buffer and prints this buffer after it closes
the connection with the server. Test your client and server.

You can choose to do this question in either Java or Python, depending on your choice you can answer

questions in section(9.4.1] or(9.4.2)

9.4.1 Java Implementation Questions

1. Add your code to the Assignment report. You can add screenshots of your test outputs.

2. Explain How is the Truststore file (cacerts) secured against modifications?

3. You might have noticed that the server and client pass phrases are hard coded in the code
sample. This is not security best practice. Suggest two or more methods that are more efficient
and highlight which of the two that should be most preferable and under which conditions. Hint.
If a password is stored in clear text, say in a code file that is accessible by anyone then it is
not really secure, think how do you enter your passwords lets say to mail application. Think of
another method for password extraction based on secure storage.

4. When you list the content of, for example, the server PKCS12 file. You see an entry indicating
the certificate chain length of the server key, e.g.

Entry type: PrivateKeyEntry
Certificate chain length: 2

Why must this chain length be larger than 1 as this point?

5. What happens if you in the previous assignment use a server certificate that has expired? What
error codes you will see at the server and the client?

6. Show how the server would do mutual TLS authentication of the client certificate? You can do
this bychanging the 2nd argument for
context.init(keyManagers, null, new SecureRandom()); from null to trustManagers

7. We previously noted that the keystore of the server had chain length 2 indicating that in the
keystore we have both the server certificate and the ca certificate. One might wonder is it really
needed for the server to have this CA certificate in its keystore after we have imported its server
certificate into it? It is the client that will need to use the CA root certificate in the chain validation
and there is no security gain in having the server send it too in the TLS handshake. Try to
remove the CA cert from the keystore and see if you still get a TLS connection. To remove
the CA certificate enter: keytool -delete -alias myCA -keystore serverKeystore.jks
Start the server again and try to connect with your client. What behaviour does your client and
server experiance. Explain in your own words, add screenshots to motivate your answer

Refer to section[4.] for instructions.

29

Project2 Assignment - PKl and TLS Assignment questions

9.4.2 Python Implementation Questions

1. Add your code to the Assignment report. You can add screenshots of your test outputs.

2. What happens if you in the previous assignment use a server certificate that has expired? What
error codes you will see at the server and the client?

3. You might have noticed that the server and client pass phrases are hard coded in the code
sample. This is not security best practice. Suggest two or more methods that are more efficient
and highlight which of the two that should be most preferable and under which conditions. Hint.
If a password is stored in clear text, say in a code file that is accessible by anyone then it is
not really secure, think how do you enter your passwords lets say to mail application. Think of
another method for password extraction based on secure storage.

4. openssl offers the curl option with s_client -connect "server addr". Explain how
this could used to examine the server certificate chain length.

5. Create a new server certificate as shown earlier, sign it by the root CA. Add it to the server code
to use instead. Re-check the chain length, did it change? Explain your finding and illustrate
why or why not it has not changed. If the chain length does not change, suggest a scenario
where the chain length would increase (you don’t need to do any implementation, search online
to understand the concept of intermediateCA and what are the purpose)

6. Show how the server would do mutual TLS authentication of the client certificate? You can do
this by changing the argument for context.verify_mode

7. Create a new PKCS12 file for the server, this time don’t include the CA certificate. With mutual
TLS authentication set in the server code, what behaviour do you get? Add your steps for
creating the new PKCS12 file, add a dump of the file, add screen shots of the code output and
highlight what parts of the code you changed to create mutual TLS authentication.

Refer to section[4.2]for instructions.

9.5 AQuestion E

1. Start your server again but now you use an browse(Firefox, Safari, Edge, or Chrome) to connect
to your server, e.g. https://localhost:8043. Explain what happens.

Note: Before you start with this question you need to disable TLS mutual authentication from the
server side.

Note: Our server will likely crash here which is natural because the browser is not the client our
server can fully handle. But something you see more than just the server crashing.

2. Add you CA certificate as trusted root certificate to your browser and repeat the previous task.
Explain what happens.

The procedure how to add a root certificate depends on your browser. Search the internet for the right
steps. For example for Firefox these are
https://docs.vmware.com/en/VMware-Adapter-for-SAP-Landscape-Management/2.0/
Installation-and-Administration-Guide-for-VLA-Administrators/GUID-0CED691F-79D3-
43A4-B90D-CD97650C13A0.html

Refer to section B for instructions.

9.6 Question F.1

Let us first consider the server authentication only case. Start Wireshark and activate capturing of the
local interface, and then start the server and the client on your machine. Trace the TCP packages on
the servers ports. Identify the following

1. Key exchange method and packets

30

https://docs.vmware.com/en/VMware-Adapter-for-SAP-Landscape-Management /2.0/
Installation-and-Administration-Guide-for-VLA-Administrators/GUID-0CED691F-79D3-
43A4-B90D-CD97650C13A0.html

Project2 Assignment - PKl and TLS Assignment questions

2. The certificate information the server presents to the client. In what order do the certificates
appear?

3. Rerun the above but with the server modified so it picks one specific cipher suite. This can be
achieved by the setEnabledCipherSuites method of the SSLSocket.

Highlight your finding in your assignment report by using screenshots of the captured traffic. Explain
each step and what you noticed.

Refer to section |6l for instructions.

9.7 Question F.2

Now activate client authentication with mutual TLS authentication.

Start Wireshark and activate capturing of the local interface, and then start the server and the client
on your machine. Trace the TCP packages on the servers ports. Identify the following

1. Key exchange method and packets

2. The certificate information the client presents to the server. In what order do the certificates
appear?

Highlight your finding in your assignment report by using screenshots of the captured traffic. Explain
each step and what you noticed.

Refer to section[6l for instructions.

31

	General instructions
	Checklist

	Introduction
	Setting up the PKI
	CA certificate
	Server and Client Certificate
	Secure Storage for Keys and Certificates

	The TLS Server and Client
	Implementation in Java
	Implementation in Python

	TLS sockets and https
	Analysis of TLS traffic
	How To
	Install OpenSSL
	Java keytool
	Install and use Wireshark
	Debug
	Force use of specific cipher suites

	If everything fails
	Assignment questions
	Question A
	Question B
	Question C
	Question D
	Java Implementation Questions
	Python Implementation Questions

	Question E
	Question F.1
	Question F.2

