pysim/statpy.py

108 lines
2.1 KiB
Python
Raw Permalink Normal View History

2024-04-28 23:02:14 +02:00
#!/bin/python3
import numpy as np
# import pandas as pd
import time
# Print the current time
print(time.strftime("%Y-%m-%d %H:%M:%S"))
a = {1, 2, 3}
assert 1 in a, "1 is not in a"
assert 4 not in a, "4 is in a"
b = {"a": 1, "b": 2, "c": 3}
assert "a" in b, "a is not in b"
assert "d" not in b, "d is in b"
c = a.union(b.values())
assert 1 in c, "1 is not in c"
# Xor
assert 1 ^ 1 == 0
assert 1 ^ 0 == 1
assert 0 ^ 1 == 1
assert 0 ^ 0 == 0
a = 0b1010 # 10
a = a ^ 0b1010 # 10
assert a == 0, "a should be 0"
# Poisson distribution
# print(np.random.poisson(5, 1))
# print(np.random.binomial(10, 0.5, 10))
# Probability mass function of poisson distribution
def pmf_poisson(k, l):
return (l**k) * np.exp(-l) / np.math.factorial(k)
def mean(l):
return sum(l) / len(l)
def median(l):
l.sort()
n = len(l)
if n % 2 == 0:
return (l[n // 2 - 1] + l[n // 2]) / 2
else:
return l[n // 2]
def mode(l):
return max(set(l), key=l.count)
assert median([1, 2, 3, 4]) == 2.5
assert median([1, 2, 3, 4, 5]) == 3
quantile = np.quantile
# def quantile(l, q):
assert quantile([1, 2, 3, 4, 5], 0.5) == 3
assert quantile([1, 2, 3, 4, 5], 0.25) == 2
assert quantile([1, 2, 3, 4, 5], 0.75) == 4
def whisker_plot(l):
q1 = quantile(l, 0.25) # Lower quartile
q3 = quantile(l, 0.75) # Upper quartile
iqr = q3 - q1 # Interquartile range
lw = q1 - 1.5 * iqr # Lower whisker
uw = q3 + 1.5 * iqr # Upper whisker
return lw, q1, q3, uw
def outliers(l):
lw, q1, q3, uw = whisker_plot(l)
return [x for x in l if x < lw or x > uw]
values = [16, 18, 28, 13, 50, 31, 25, 22, 18, 23, 29, 38]
assert median(values) == 24
# assert quantile(values, 0.25) == 18
# assert quantile(values, 0.75) == 30
print(quantile(values, 0.25))
print(quantile(values, 0.75))
print(whisker_plot(values))
print(outliers(values))
# Plot the box diagram
import matplotlib.pyplot as plt
# plt.boxplot(values, vert=False)
# plt.show()
# Plot the poisson distribution when lambda = 5
# import matplotlib.pyplot as plt
# s = np.random.poisson(3, 10000)
# count, bins, ignored = plt.hist(s, 10, density=True)
# plt.show()