2006-06-12 17:22:12 +02:00
|
|
|
#include "types.h"
|
|
|
|
#include "param.h"
|
|
|
|
#include "mmu.h"
|
|
|
|
#include "proc.h"
|
|
|
|
#include "defs.h"
|
|
|
|
#include "x86.h"
|
2006-06-15 18:02:20 +02:00
|
|
|
#include "traps.h"
|
|
|
|
#include "syscall.h"
|
2006-06-22 22:47:23 +02:00
|
|
|
#include "elf.h"
|
|
|
|
#include "param.h"
|
2006-07-12 13:15:38 +02:00
|
|
|
#include "spinlock.h"
|
2006-06-12 17:22:12 +02:00
|
|
|
|
2006-06-14 00:08:20 +02:00
|
|
|
extern char edata[], end[];
|
2006-07-20 11:07:53 +02:00
|
|
|
extern uchar _binary_user1_start[], _binary_user1_size[];
|
|
|
|
extern uchar _binary_usertests_start[], _binary_usertests_size[];
|
|
|
|
extern uchar _binary_userfs_start[], _binary_userfs_size[];
|
2006-06-12 17:22:12 +02:00
|
|
|
|
2006-07-15 14:03:57 +02:00
|
|
|
extern int use_console_lock;
|
2006-07-12 13:15:38 +02:00
|
|
|
|
2006-07-16 17:50:13 +02:00
|
|
|
// CPU 0 starts running C code here.
|
2006-07-16 18:03:51 +02:00
|
|
|
// This is called main0 not main so that it can have
|
|
|
|
// a void return type. Gcc can't handle functions named
|
|
|
|
// main that don't return int. Really.
|
|
|
|
void
|
|
|
|
main0(void)
|
2006-06-12 17:22:12 +02:00
|
|
|
{
|
2006-07-16 17:50:13 +02:00
|
|
|
int i;
|
2006-06-12 17:22:12 +02:00
|
|
|
struct proc *p;
|
2006-06-22 03:28:57 +02:00
|
|
|
|
2006-06-14 00:08:20 +02:00
|
|
|
// clear BSS
|
|
|
|
memset(edata, 0, end - edata);
|
|
|
|
|
2006-07-16 17:50:13 +02:00
|
|
|
// Make sure interrupts stay disabled on all processors
|
|
|
|
// until each signals it is ready, by pretending to hold
|
|
|
|
// an extra lock.
|
|
|
|
for(i=0; i<NCPU; i++)
|
|
|
|
cpus[i].nlock++;
|
|
|
|
|
2006-07-12 19:00:54 +02:00
|
|
|
mp_init(); // collect info about this machine
|
|
|
|
|
2006-07-15 14:03:57 +02:00
|
|
|
use_console_lock = 1;
|
2006-07-12 13:15:38 +02:00
|
|
|
|
2006-07-12 19:00:54 +02:00
|
|
|
lapic_init(mp_bcpu());
|
|
|
|
|
2006-08-08 21:58:06 +02:00
|
|
|
cprintf("\n\ncpu%d: booting xv6\n\n", cpu());
|
2006-06-12 17:22:12 +02:00
|
|
|
|
2006-07-05 22:00:14 +02:00
|
|
|
pic_init(); // initialize PIC
|
2006-08-04 20:12:31 +02:00
|
|
|
ioapic_init();
|
2006-06-13 17:50:06 +02:00
|
|
|
kinit(); // physical memory allocator
|
2006-06-26 22:31:52 +02:00
|
|
|
tvinit(); // trap vectors
|
2006-08-08 21:58:06 +02:00
|
|
|
idtinit(); // this CPU's idt register
|
|
|
|
|
|
|
|
// create a fake process per CPU
|
|
|
|
// so each CPU always has a tss and a gdt
|
|
|
|
for(p = &proc[0]; p < &proc[NCPU]; p++){
|
|
|
|
p->state = IDLEPROC;
|
|
|
|
p->kstack = cpus[p-proc].mpstack;
|
|
|
|
p->pid = p - proc;
|
|
|
|
}
|
2006-06-12 17:22:12 +02:00
|
|
|
|
2006-08-08 21:58:06 +02:00
|
|
|
// fix process 0 so that copyproc() will work
|
2006-06-12 17:22:12 +02:00
|
|
|
p = &proc[0];
|
2006-07-01 23:26:01 +02:00
|
|
|
p->sz = 4 * PAGE;
|
2006-06-12 17:22:12 +02:00
|
|
|
p->mem = kalloc(p->sz);
|
|
|
|
memset(p->mem, 0, p->sz);
|
|
|
|
p->kstack = kalloc(KSTACKSIZE);
|
2006-07-17 03:58:13 +02:00
|
|
|
p->tf = (struct trapframe *) (p->kstack + KSTACKSIZE - sizeof(struct trapframe));
|
|
|
|
memset(p->tf, 0, sizeof(struct trapframe));
|
2006-07-16 17:41:47 +02:00
|
|
|
p->tf->es = p->tf->ds = p->tf->ss = (SEG_UDATA << 3) | 3;
|
|
|
|
p->tf->cs = (SEG_UCODE << 3) | 3;
|
|
|
|
p->tf->eflags = FL_IF;
|
2006-06-12 17:22:12 +02:00
|
|
|
setupsegs(p);
|
|
|
|
|
2006-08-08 21:58:06 +02:00
|
|
|
// init disk device
|
2006-08-09 18:04:04 +02:00
|
|
|
console_init();
|
2006-08-08 21:58:06 +02:00
|
|
|
ide_init();
|
|
|
|
|
2006-07-12 13:15:38 +02:00
|
|
|
mp_startthem();
|
2006-07-12 03:48:35 +02:00
|
|
|
|
2006-07-06 23:47:22 +02:00
|
|
|
// turn on timer and enable interrupts on the local APIC
|
2006-06-28 18:35:03 +02:00
|
|
|
lapic_timerinit();
|
|
|
|
lapic_enableintr();
|
2006-07-12 03:48:35 +02:00
|
|
|
|
2006-07-16 17:50:13 +02:00
|
|
|
// Enable interrupts on this processor.
|
2006-08-08 21:58:06 +02:00
|
|
|
cprintf("cpu%d: nlock %d before -- and sti\n",
|
|
|
|
cpu(), cpus[0].nlock);
|
2006-07-16 17:50:13 +02:00
|
|
|
cpus[cpu()].nlock--;
|
2006-07-11 19:39:45 +02:00
|
|
|
sti();
|
2006-06-16 22:29:25 +02:00
|
|
|
|
2006-07-16 03:47:40 +02:00
|
|
|
p = copyproc(&proc[0]);
|
2006-07-11 19:39:45 +02:00
|
|
|
|
2006-07-20 11:07:53 +02:00
|
|
|
//load_icode(p, _binary_usertests_start, (uint) _binary_usertests_size);
|
|
|
|
load_icode(p, _binary_userfs_start, (uint) _binary_userfs_size);
|
2006-07-12 03:48:35 +02:00
|
|
|
p->state = RUNNABLE;
|
Changes to allow use of native x86 ELF compilers, which on my
Linux 2.4 box using gcc 3.4.6 don't seem to follow the same
conventions as the i386-jos-elf-gcc compilers.
Can run make 'TOOLPREFIX=' or edit the Makefile.
curproc[cpu()] can now be NULL, indicating that no proc is running.
This seemed safer to me than having curproc[0] and curproc[1]
both pointing at proc[0] potentially.
The old implementation of swtch depended on the stack frame layout
used inside swtch being okay to return from on the other stack
(exactly the V6 you are not expected to understand this).
It also could be called in two contexts: at boot time, to schedule
the very first process, and later, on behalf of a process, to sleep
or schedule some other process.
I split this into two functions: scheduler and swtch.
The scheduler is now a separate never-returning function, invoked
by each cpu once set up. The scheduler looks like:
scheduler() {
setjmp(cpu.context);
pick proc to schedule
blah blah blah
longjmp(proc.context)
}
The new swtch is intended to be called only when curproc[cpu()] is not NULL,
that is, only on behalf of a user proc. It does:
swtch() {
if(setjmp(proc.context) == 0)
longjmp(cpu.context)
}
to save the current proc context and then jump over to the scheduler,
running on the cpu stack.
Similarly the system call stubs are now in assembly in usys.S to avoid
needing to know the details of stack frame layout used by the compiler.
Also various changes in the debugging prints.
2006-07-11 03:07:40 +02:00
|
|
|
cprintf("loaded userfs\n");
|
2006-07-12 03:48:35 +02:00
|
|
|
|
Changes to allow use of native x86 ELF compilers, which on my
Linux 2.4 box using gcc 3.4.6 don't seem to follow the same
conventions as the i386-jos-elf-gcc compilers.
Can run make 'TOOLPREFIX=' or edit the Makefile.
curproc[cpu()] can now be NULL, indicating that no proc is running.
This seemed safer to me than having curproc[0] and curproc[1]
both pointing at proc[0] potentially.
The old implementation of swtch depended on the stack frame layout
used inside swtch being okay to return from on the other stack
(exactly the V6 you are not expected to understand this).
It also could be called in two contexts: at boot time, to schedule
the very first process, and later, on behalf of a process, to sleep
or schedule some other process.
I split this into two functions: scheduler and swtch.
The scheduler is now a separate never-returning function, invoked
by each cpu once set up. The scheduler looks like:
scheduler() {
setjmp(cpu.context);
pick proc to schedule
blah blah blah
longjmp(proc.context)
}
The new swtch is intended to be called only when curproc[cpu()] is not NULL,
that is, only on behalf of a user proc. It does:
swtch() {
if(setjmp(proc.context) == 0)
longjmp(cpu.context)
}
to save the current proc context and then jump over to the scheduler,
running on the cpu stack.
Similarly the system call stubs are now in assembly in usys.S to avoid
needing to know the details of stack frame layout used by the compiler.
Also various changes in the debugging prints.
2006-07-11 03:07:40 +02:00
|
|
|
scheduler();
|
2006-06-12 17:22:12 +02:00
|
|
|
}
|
2006-06-22 22:47:23 +02:00
|
|
|
|
2006-07-16 17:50:13 +02:00
|
|
|
// Additional processors start here.
|
2006-07-16 18:03:51 +02:00
|
|
|
void
|
2006-07-16 17:50:13 +02:00
|
|
|
mpmain(void)
|
|
|
|
{
|
2006-08-08 21:58:06 +02:00
|
|
|
cprintf("cpu%d: starting\n", cpu());
|
2006-07-16 17:50:13 +02:00
|
|
|
idtinit(); // CPU's idt
|
2006-07-29 11:35:02 +02:00
|
|
|
if(cpu() == 0)
|
|
|
|
panic("mpmain on cpu 0");
|
2006-07-16 17:50:13 +02:00
|
|
|
lapic_init(cpu());
|
|
|
|
lapic_timerinit();
|
|
|
|
lapic_enableintr();
|
|
|
|
|
2006-08-08 21:58:06 +02:00
|
|
|
setupsegs(&proc[cpu()]);
|
|
|
|
|
|
|
|
cpuid(0, 0, 0, 0, 0); // memory barrier
|
|
|
|
cpus[cpu()].booted = 1;
|
|
|
|
|
2006-07-16 17:50:13 +02:00
|
|
|
// Enable interrupts on this processor.
|
2006-08-08 21:58:06 +02:00
|
|
|
cprintf("cpu%d: initial nlock %d\n", cpu(), cpus[cpu()].nlock);
|
2006-07-16 17:50:13 +02:00
|
|
|
cpus[cpu()].nlock--;
|
|
|
|
sti();
|
|
|
|
|
|
|
|
scheduler();
|
|
|
|
}
|
|
|
|
|
2006-06-22 22:47:23 +02:00
|
|
|
void
|
2006-07-20 11:07:53 +02:00
|
|
|
load_icode(struct proc *p, uchar *binary, uint size)
|
2006-06-22 22:47:23 +02:00
|
|
|
{
|
2006-06-28 18:35:03 +02:00
|
|
|
int i;
|
2006-07-17 03:58:13 +02:00
|
|
|
struct elfhdr *elf;
|
|
|
|
struct proghdr *ph;
|
2006-06-22 22:47:23 +02:00
|
|
|
|
2006-06-28 18:35:03 +02:00
|
|
|
// Check magic number on binary
|
2006-07-17 03:58:13 +02:00
|
|
|
elf = (struct elfhdr*) binary;
|
2006-07-16 17:41:47 +02:00
|
|
|
cprintf("elf %x magic %x\n", elf, elf->magic);
|
|
|
|
if (elf->magic != ELF_MAGIC)
|
2006-06-28 18:35:03 +02:00
|
|
|
panic("load_icode: not an ELF binary");
|
2006-06-22 22:47:23 +02:00
|
|
|
|
2006-07-16 17:41:47 +02:00
|
|
|
p->tf->eip = elf->entry;
|
|
|
|
p->tf->esp = p->sz;
|
2006-06-22 22:47:23 +02:00
|
|
|
|
2006-06-28 18:35:03 +02:00
|
|
|
// Map and load segments as directed.
|
2006-07-17 03:58:13 +02:00
|
|
|
ph = (struct proghdr*) (binary + elf->phoff);
|
2006-07-16 17:41:47 +02:00
|
|
|
for (i = 0; i < elf->phnum; i++, ph++) {
|
|
|
|
if (ph->type != ELF_PROG_LOAD)
|
2006-06-28 18:35:03 +02:00
|
|
|
continue;
|
2006-07-16 17:41:47 +02:00
|
|
|
cprintf("va %x memsz %d\n", ph->va, ph->memsz);
|
|
|
|
if (ph->va + ph->memsz < ph->va)
|
2006-06-28 18:35:03 +02:00
|
|
|
panic("load_icode: overflow in elf header segment");
|
2006-07-16 17:41:47 +02:00
|
|
|
if (ph->va + ph->memsz >= p->sz)
|
2006-06-28 18:35:03 +02:00
|
|
|
panic("load_icode: icode wants to be above UTOP");
|
|
|
|
|
|
|
|
// Load/clear the segment
|
2006-07-16 17:41:47 +02:00
|
|
|
memmove(p->mem + ph->va, binary + ph->offset, ph->filesz);
|
|
|
|
memset(p->mem + ph->va + ph->filesz, 0, ph->memsz - ph->filesz);
|
2006-06-28 18:35:03 +02:00
|
|
|
}
|
2006-06-22 22:47:23 +02:00
|
|
|
}
|