xv6-riscv-kernel/kalloc.c

99 lines
2.2 KiB
C
Raw Normal View History

2006-09-06 19:50:20 +02:00
// Physical memory allocator, intended to allocate
// memory for user processes, kernel stacks, page table pages,
// and pipe buffers. Allocates 4096-byte pages.
2006-06-12 17:22:12 +02:00
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "spinlock.h"
void freerange(void *vstart, void *vend);
extern char end[]; // first address after kernel loaded from ELF file
// defined by the kernel linker script in kernel.ld
2006-06-12 17:22:12 +02:00
struct run {
struct run *next;
};
struct {
struct spinlock lock;
int use_lock;
struct run *freelist;
} kmem;
2006-06-12 17:22:12 +02:00
// Initialization happens in two phases.
// 1. main() calls kinit1() while still using entrypgdir to place just
// the pages mapped by entrypgdir on free list.
// 2. main() calls kinit2() with the rest of the physical pages
// after installing a full page table that maps them on all cores.
void
kinit1(void *vstart, void *vend)
{
initlock(&kmem.lock, "kmem");
kmem.use_lock = 0;
freerange(vstart, vend);
}
void
kinit2(void *vstart, void *vend)
{
freerange(vstart, vend);
kmem.use_lock = 1;
}
2010-09-19 13:18:42 +02:00
2006-06-12 17:22:12 +02:00
void
freerange(void *vstart, void *vend)
2006-06-12 17:22:12 +02:00
{
char *p;
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
p = (char*)PGROUNDUP((uint64)vstart);
for(; p + PGSIZE <= (char*)vend; p += PGSIZE)
kfree(p);
2006-06-12 17:22:12 +02:00
}
2010-08-31 23:52:03 +02:00
//PAGEBREAK: 21
// Free the page of physical memory pointed at by v,
2006-09-07 16:12:30 +02:00
// which normally should have been returned by a
// call to kalloc(). (The exception is when
2006-09-07 16:12:30 +02:00
// initializing the allocator; see kinit above.)
2006-06-12 17:22:12 +02:00
void
kfree(char *v)
2006-06-12 17:22:12 +02:00
{
struct run *r;
2006-06-12 17:22:12 +02:00
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
if((uint64)v % PGSIZE || v < end || V2P(v) >= PHYSTOP)
2006-06-12 17:22:12 +02:00
panic("kfree");
2006-09-06 20:06:04 +02:00
// Fill with junk to catch dangling refs.
memset(v, 1, PGSIZE);
if(kmem.use_lock)
acquire(&kmem.lock);
r = (struct run*)v;
r->next = kmem.freelist;
kmem.freelist = r;
if(kmem.use_lock)
release(&kmem.lock);
2006-06-12 17:22:12 +02:00
}
// Allocate one 4096-byte page of physical memory.
// Returns a pointer that the kernel can use.
2006-09-06 19:50:20 +02:00
// Returns 0 if the memory cannot be allocated.
2006-07-16 18:05:37 +02:00
char*
kalloc(void)
2006-06-12 17:22:12 +02:00
{
struct run *r;
2006-06-12 17:22:12 +02:00
if(kmem.use_lock)
acquire(&kmem.lock);
r = kmem.freelist;
if(r)
kmem.freelist = r->next;
if(kmem.use_lock)
release(&kmem.lock);
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
if(r != 0 && (uint64) r < KERNBASE)
panic("kalloc");
return (char*)r;
2006-06-12 17:22:12 +02:00
}