xv6-riscv-kernel/proc.h

64 lines
2.4 KiB
C
Raw Normal View History

// Per-CPU state
struct cpu {
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
uint64 syscallno; // Temporary used by sysentry
uint64 usp; // Temporary used by sysentry
struct proc *proc; // The process running on this cpu or null
uchar apicid; // Local APIC ID
struct context *scheduler; // swtch() here to enter scheduler
struct taskstate ts; // Used by x86 to find stack for interrupt
struct segdesc gdt[NSEGS]; // x86 global descriptor table
2012-08-28 18:57:05 +02:00
volatile uint started; // Has the CPU started?
int ncli; // Depth of pushcli nesting.
int intena; // Were interrupts enabled before pushcli?
};
extern struct cpu cpus[NCPU];
extern int ncpu;
//PAGEBREAK: 17
2006-09-07 16:12:30 +02:00
// Saved registers for kernel context switches.
2008-10-15 07:14:10 +02:00
// Don't need to save all the segment registers (%cs, etc),
2006-09-07 16:12:30 +02:00
// because they are constant across kernel contexts.
// Don't need to save %eax, %ecx, %edx, because the
// x86 convention is that the caller has saved them.
// Contexts are stored at the bottom of the stack they
// describe; the stack pointer is the address of the context.
2009-10-07 21:31:55 +02:00
// The layout of the context matches the layout of the stack in swtch.S
// at the "Switch stacks" comment. Switch doesn't save eip explicitly,
2009-10-07 23:42:14 +02:00
// but it is on the stack and allocproc() manipulates it.
2007-08-28 14:48:33 +02:00
struct context {
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
uint64 r15;
uint64 r14;
uint64 r13;
uint64 r12;
uint64 r11;
uint64 rbx;
2018-10-04 00:13:51 +02:00
uint64 rbp;
uint64 rip;
2006-07-11 03:07:40 +02:00
};
enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
2006-09-07 16:12:30 +02:00
// Per-process state
struct proc {
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
char *kstack; // Bottom of kernel stack for this process, must be first entry
uint64 sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
enum procstate state; // Process state
int pid; // Process ID
2008-10-15 07:15:32 +02:00
struct proc *parent; // Parent process
struct sysframe *sf; // Syscall frame for current syscall
struct context *context; // swtch() here to run process
2008-10-15 07:15:32 +02:00
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
2006-09-07 16:12:30 +02:00
struct file *ofile[NOFILE]; // Open files
2008-10-15 07:15:32 +02:00
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)
2006-06-12 17:22:12 +02:00
};
2007-08-24 16:56:17 +02:00
// Process memory is laid out contiguously, low addresses first:
2006-09-07 16:12:30 +02:00
// text
// original data and bss
// fixed-size stack
// expandable heap