Frans' proc_lock.
This commit is contained in:
parent
b48ea5d220
commit
2875069973
2 changed files with 34 additions and 77 deletions
|
@ -16,11 +16,14 @@ int nextpid = 1;
|
||||||
struct spinlock pid_lock;
|
struct spinlock pid_lock;
|
||||||
|
|
||||||
extern void forkret(void);
|
extern void forkret(void);
|
||||||
static void wakeup1(struct proc *chan);
|
|
||||||
static void freeproc(struct proc *p);
|
static void freeproc(struct proc *p);
|
||||||
|
|
||||||
extern char trampoline[]; // trampoline.S
|
extern char trampoline[]; // trampoline.S
|
||||||
|
|
||||||
|
// protects parent/child relationships.
|
||||||
|
// must be held when using p->parent.
|
||||||
|
// must be acquired before any p->lock.
|
||||||
|
struct spinlock proc_tree_lock;
|
||||||
|
|
||||||
// Allocate a page for each process's kernel stack.
|
// Allocate a page for each process's kernel stack.
|
||||||
// Map it high in memory, followed by an invalid
|
// Map it high in memory, followed by an invalid
|
||||||
|
@ -45,6 +48,7 @@ procinit(void)
|
||||||
struct proc *p;
|
struct proc *p;
|
||||||
|
|
||||||
initlock(&pid_lock, "nextpid");
|
initlock(&pid_lock, "nextpid");
|
||||||
|
initlock(&proc_tree_lock, "proc_tree");
|
||||||
for(p = proc; p < &proc[NPROC]; p++) {
|
for(p = proc; p < &proc[NPROC]; p++) {
|
||||||
initlock(&p->lock, "proc");
|
initlock(&p->lock, "proc");
|
||||||
p->kstack = KSTACK((int) (p - proc));
|
p->kstack = KSTACK((int) (p - proc));
|
||||||
|
@ -113,6 +117,7 @@ allocproc(void)
|
||||||
|
|
||||||
found:
|
found:
|
||||||
p->pid = allocpid();
|
p->pid = allocpid();
|
||||||
|
p->state = USED;
|
||||||
|
|
||||||
// Allocate a trapframe page.
|
// Allocate a trapframe page.
|
||||||
if((p->trapframe = (struct trapframe *)kalloc()) == 0){
|
if((p->trapframe = (struct trapframe *)kalloc()) == 0){
|
||||||
|
@ -283,8 +288,6 @@ fork(void)
|
||||||
}
|
}
|
||||||
np->sz = p->sz;
|
np->sz = p->sz;
|
||||||
|
|
||||||
np->parent = p;
|
|
||||||
|
|
||||||
// copy saved user registers.
|
// copy saved user registers.
|
||||||
*(np->trapframe) = *(p->trapframe);
|
*(np->trapframe) = *(p->trapframe);
|
||||||
|
|
||||||
|
@ -301,35 +304,30 @@ fork(void)
|
||||||
|
|
||||||
pid = np->pid;
|
pid = np->pid;
|
||||||
|
|
||||||
np->state = RUNNABLE;
|
release(&np->lock);
|
||||||
|
|
||||||
|
acquire(&proc_tree_lock);
|
||||||
|
np->parent = p;
|
||||||
|
release(&proc_tree_lock);
|
||||||
|
|
||||||
|
acquire(&np->lock);
|
||||||
|
np->state = RUNNABLE;
|
||||||
release(&np->lock);
|
release(&np->lock);
|
||||||
|
|
||||||
return pid;
|
return pid;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Pass p's abandoned children to init.
|
// Pass p's abandoned children to init.
|
||||||
// Caller must hold p->lock.
|
// Caller must hold proc_tree_lock.
|
||||||
void
|
void
|
||||||
reparent(struct proc *p)
|
reparent(struct proc *p)
|
||||||
{
|
{
|
||||||
struct proc *pp;
|
struct proc *pp;
|
||||||
|
|
||||||
for(pp = proc; pp < &proc[NPROC]; pp++){
|
for(pp = proc; pp < &proc[NPROC]; pp++){
|
||||||
// this code uses pp->parent without holding pp->lock.
|
|
||||||
// acquiring the lock first could cause a deadlock
|
|
||||||
// if pp or a child of pp were also in exit()
|
|
||||||
// and about to try to lock p.
|
|
||||||
if(pp->parent == p){
|
if(pp->parent == p){
|
||||||
// pp->parent can't change between the check and the acquire()
|
|
||||||
// because only the parent changes it, and we're the parent.
|
|
||||||
acquire(&pp->lock);
|
|
||||||
pp->parent = initproc;
|
pp->parent = initproc;
|
||||||
// we should wake up init here, but that would require
|
wakeup(initproc);
|
||||||
// initproc->lock, which would be a deadlock, since we hold
|
|
||||||
// the lock on one of init's children (pp). this is why
|
|
||||||
// exit() always wakes init (before acquiring any locks).
|
|
||||||
release(&pp->lock);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -359,28 +357,7 @@ exit(int status)
|
||||||
end_op();
|
end_op();
|
||||||
p->cwd = 0;
|
p->cwd = 0;
|
||||||
|
|
||||||
// we might re-parent a child to init. we can't be precise about
|
acquire(&proc_tree_lock);
|
||||||
// waking up init, since we can't acquire its lock once we've
|
|
||||||
// acquired any other proc lock. so wake up init whether that's
|
|
||||||
// necessary or not. init may miss this wakeup, but that seems
|
|
||||||
// harmless.
|
|
||||||
acquire(&initproc->lock);
|
|
||||||
wakeup1(initproc);
|
|
||||||
release(&initproc->lock);
|
|
||||||
|
|
||||||
// grab a copy of p->parent, to ensure that we unlock the same
|
|
||||||
// parent we locked. in case our parent gives us away to init while
|
|
||||||
// we're waiting for the parent lock. we may then race with an
|
|
||||||
// exiting parent, but the result will be a harmless spurious wakeup
|
|
||||||
// to a dead or wrong process; proc structs are never re-allocated
|
|
||||||
// as anything else.
|
|
||||||
acquire(&p->lock);
|
|
||||||
struct proc *original_parent = p->parent;
|
|
||||||
release(&p->lock);
|
|
||||||
|
|
||||||
// we need the parent's lock in order to wake it up from wait().
|
|
||||||
// the parent-then-child rule says we have to lock it first.
|
|
||||||
acquire(&original_parent->lock);
|
|
||||||
|
|
||||||
acquire(&p->lock);
|
acquire(&p->lock);
|
||||||
|
|
||||||
|
@ -388,12 +365,12 @@ exit(int status)
|
||||||
reparent(p);
|
reparent(p);
|
||||||
|
|
||||||
// Parent might be sleeping in wait().
|
// Parent might be sleeping in wait().
|
||||||
wakeup1(original_parent);
|
wakeup(p->parent);
|
||||||
|
|
||||||
p->xstate = status;
|
p->xstate = status;
|
||||||
p->state = ZOMBIE;
|
p->state = ZOMBIE;
|
||||||
|
|
||||||
release(&original_parent->lock);
|
release(&proc_tree_lock);
|
||||||
|
|
||||||
// Jump into the scheduler, never to return.
|
// Jump into the scheduler, never to return.
|
||||||
sched();
|
sched();
|
||||||
|
@ -409,20 +386,13 @@ wait(uint64 addr)
|
||||||
int havekids, pid;
|
int havekids, pid;
|
||||||
struct proc *p = myproc();
|
struct proc *p = myproc();
|
||||||
|
|
||||||
// hold p->lock for the whole time to avoid lost
|
acquire(&proc_tree_lock);
|
||||||
// wakeups from a child's exit().
|
|
||||||
acquire(&p->lock);
|
|
||||||
|
|
||||||
for(;;){
|
for(;;){
|
||||||
// Scan through table looking for exited children.
|
// Scan through table looking for exited children.
|
||||||
havekids = 0;
|
havekids = 0;
|
||||||
for(np = proc; np < &proc[NPROC]; np++){
|
for(np = proc; np < &proc[NPROC]; np++){
|
||||||
// this code uses np->parent without holding np->lock.
|
|
||||||
// acquiring the lock first would cause a deadlock,
|
|
||||||
// since np might be an ancestor, and we already hold p->lock.
|
|
||||||
if(np->parent == p){
|
if(np->parent == p){
|
||||||
// np->parent can't change between the check and the acquire()
|
|
||||||
// because only the parent changes it, and we're the parent.
|
|
||||||
acquire(&np->lock);
|
acquire(&np->lock);
|
||||||
havekids = 1;
|
havekids = 1;
|
||||||
if(np->state == ZOMBIE){
|
if(np->state == ZOMBIE){
|
||||||
|
@ -436,7 +406,7 @@ wait(uint64 addr)
|
||||||
}
|
}
|
||||||
freeproc(np);
|
freeproc(np);
|
||||||
release(&np->lock);
|
release(&np->lock);
|
||||||
release(&p->lock);
|
release(&proc_tree_lock);
|
||||||
return pid;
|
return pid;
|
||||||
}
|
}
|
||||||
release(&np->lock);
|
release(&np->lock);
|
||||||
|
@ -445,12 +415,12 @@ wait(uint64 addr)
|
||||||
|
|
||||||
// No point waiting if we don't have any children.
|
// No point waiting if we don't have any children.
|
||||||
if(!havekids || p->killed){
|
if(!havekids || p->killed){
|
||||||
release(&p->lock);
|
release(&proc_tree_lock);
|
||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Wait for a child to exit.
|
// Wait for a child to exit.
|
||||||
sleep(p, &p->lock); //DOC: wait-sleep
|
sleep(p, &proc_tree_lock); //DOC: wait-sleep
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -563,10 +533,9 @@ sleep(void *chan, struct spinlock *lk)
|
||||||
// guaranteed that we won't miss any wakeup
|
// guaranteed that we won't miss any wakeup
|
||||||
// (wakeup locks p->lock),
|
// (wakeup locks p->lock),
|
||||||
// so it's okay to release lk.
|
// so it's okay to release lk.
|
||||||
if(lk != &p->lock){ //DOC: sleeplock0
|
|
||||||
acquire(&p->lock); //DOC: sleeplock1
|
acquire(&p->lock); //DOC: sleeplock1
|
||||||
release(lk);
|
release(lk);
|
||||||
}
|
|
||||||
|
|
||||||
// Go to sleep.
|
// Go to sleep.
|
||||||
p->chan = chan;
|
p->chan = chan;
|
||||||
|
@ -578,10 +547,8 @@ sleep(void *chan, struct spinlock *lk)
|
||||||
p->chan = 0;
|
p->chan = 0;
|
||||||
|
|
||||||
// Reacquire original lock.
|
// Reacquire original lock.
|
||||||
if(lk != &p->lock){
|
|
||||||
release(&p->lock);
|
release(&p->lock);
|
||||||
acquire(lk);
|
acquire(lk);
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Wake up all processes sleeping on chan.
|
// Wake up all processes sleeping on chan.
|
||||||
|
@ -592,23 +559,13 @@ wakeup(void *chan)
|
||||||
struct proc *p;
|
struct proc *p;
|
||||||
|
|
||||||
for(p = proc; p < &proc[NPROC]; p++) {
|
for(p = proc; p < &proc[NPROC]; p++) {
|
||||||
|
if(p != myproc()){
|
||||||
acquire(&p->lock);
|
acquire(&p->lock);
|
||||||
if(p->state == SLEEPING && p->chan == chan) {
|
if(p->state == SLEEPING && p->chan == chan) {
|
||||||
p->state = RUNNABLE;
|
p->state = RUNNABLE;
|
||||||
}
|
}
|
||||||
release(&p->lock);
|
release(&p->lock);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
// Wake up p if it is sleeping in wait(); used by exit().
|
|
||||||
// Caller must hold p->lock.
|
|
||||||
static void
|
|
||||||
wakeup1(struct proc *p)
|
|
||||||
{
|
|
||||||
if(!holding(&p->lock))
|
|
||||||
panic("wakeup1");
|
|
||||||
if(p->chan == p && p->state == SLEEPING) {
|
|
||||||
p->state = RUNNABLE;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -80,7 +80,7 @@ struct trapframe {
|
||||||
/* 280 */ uint64 t6;
|
/* 280 */ uint64 t6;
|
||||||
};
|
};
|
||||||
|
|
||||||
enum procstate { UNUSED, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
|
enum procstate { UNUSED, USED, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
|
||||||
|
|
||||||
// Per-process state
|
// Per-process state
|
||||||
struct proc {
|
struct proc {
|
||||||
|
|
Loading…
Reference in a new issue