Complete reformat

This commit is contained in:
Imbus 2024-06-15 16:55:06 +02:00
parent b1a34398e9
commit d6793bf093
60 changed files with 1952 additions and 1995 deletions

View file

@ -13,7 +13,6 @@
// * Only one process at a time can use a buffer,
// so do not keep them longer than necessary.
#include "types.h"
#include "param.h"
#include "spinlock.h"
@ -25,7 +24,7 @@
struct {
struct spinlock lock;
struct buf buf[NBUF];
struct buf buf[NBUF];
// Linked list of all buffers, through prev/next.
// Sorted by how recently the buffer was used.
@ -43,7 +42,7 @@ binit(void)
// Create linked list of buffers
bcache.head.prev = &bcache.head;
bcache.head.next = &bcache.head;
for(b = bcache.buf; b < bcache.buf+NBUF; b++){
for(b = bcache.buf; b < bcache.buf + NBUF; b++) {
b->next = bcache.head.next;
b->prev = &bcache.head;
initsleeplock(&b->lock, "buffer");
@ -55,7 +54,7 @@ binit(void)
// Look through buffer cache for block on device dev.
// If not found, allocate a buffer.
// In either case, return locked buffer.
static struct buf*
static struct buf *
bget(u32 dev, u32 blockno)
{
struct buf *b;
@ -63,8 +62,8 @@ bget(u32 dev, u32 blockno)
acquire(&bcache.lock);
// Is the block already cached?
for(b = bcache.head.next; b != &bcache.head; b = b->next){
if(b->dev == dev && b->blockno == blockno){
for(b = bcache.head.next; b != &bcache.head; b = b->next) {
if(b->dev == dev && b->blockno == blockno) {
b->refcnt++;
release(&bcache.lock);
acquiresleep(&b->lock);
@ -74,7 +73,7 @@ bget(u32 dev, u32 blockno)
// Not cached.
// Recycle the least recently used (LRU) unused buffer.
for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
for(b = bcache.head.prev; b != &bcache.head; b = b->prev) {
if(b->refcnt == 0) {
b->dev = dev;
b->blockno = blockno;
@ -89,7 +88,7 @@ bget(u32 dev, u32 blockno)
}
// Return a locked buf with the contents of the indicated block.
struct buf*
struct buf *
bread(u32 dev, u32 blockno)
{
struct buf *b;
@ -123,7 +122,7 @@ brelse(struct buf *b)
acquire(&bcache.lock);
b->refcnt--;
if (b->refcnt == 0) {
if(b->refcnt == 0) {
// no one is waiting for it.
b->next->prev = b->prev;
b->prev->next = b->next;
@ -132,22 +131,22 @@ brelse(struct buf *b)
bcache.head.next->prev = b;
bcache.head.next = b;
}
release(&bcache.lock);
}
void
bpin(struct buf *b) {
bpin(struct buf *b)
{
acquire(&bcache.lock);
b->refcnt++;
release(&bcache.lock);
}
void
bunpin(struct buf *b) {
bunpin(struct buf *b)
{
acquire(&bcache.lock);
b->refcnt--;
release(&bcache.lock);
}

View file

@ -1,12 +1,11 @@
struct buf {
int valid; // has data been read from disk?
int disk; // does disk "own" buf?
u32 dev;
u32 blockno;
int valid; // has data been read from disk?
int disk; // does disk "own" buf?
u32 dev;
u32 blockno;
struct sleeplock lock;
u32 refcnt;
struct buf *prev; // LRU cache list
struct buf *next;
u8 data[BSIZE];
u32 refcnt;
struct buf *prev; // LRU cache list
struct buf *next;
u8 data[BSIZE];
};

View file

@ -23,7 +23,7 @@
#include "proc.h"
#define BACKSPACE 0x100
#define C(x) ((x)-'@') // Control-x
#define C(x) ((x) - '@') // Control-x
//
// send one character to the uart.
@ -33,9 +33,11 @@
void
consputc(int c)
{
if(c == BACKSPACE){
if(c == BACKSPACE) {
// if the user typed backspace, overwrite with a space.
uartputc_sync('\b'); uartputc_sync(' '); uartputc_sync('\b');
uartputc_sync('\b');
uartputc_sync(' ');
uartputc_sync('\b');
} else {
uartputc_sync(c);
}
@ -43,13 +45,13 @@ consputc(int c)
struct {
struct spinlock lock;
// input
#define INPUT_BUF_SIZE 128
char buf[INPUT_BUF_SIZE];
u32 r; // Read index
u32 w; // Write index
u32 e; // Edit index
u32 r; // Read index
u32 w; // Write index
u32 e; // Edit index
} cons;
//
@ -60,9 +62,9 @@ consolewrite(int user_src, u64 src, int n)
{
int i;
for(i = 0; i < n; i++){
for(i = 0; i < n; i++) {
char c;
if(either_copyin(&c, user_src, src+i, 1) == -1)
if(either_copyin(&c, user_src, src + i, 1) == -1)
break;
uartputc(c);
}
@ -79,17 +81,17 @@ consolewrite(int user_src, u64 src, int n)
int
consoleread(int user_dst, u64 dst, int n)
{
u32 target;
int c;
u32 target;
int c;
char cbuf;
target = n;
acquire(&cons.lock);
while(n > 0){
while(n > 0) {
// wait until interrupt handler has put some
// input into cons.buffer.
while(cons.r == cons.w){
if(killed(myproc())){
while(cons.r == cons.w) {
if(killed(myproc())) {
release(&cons.lock);
return -1;
}
@ -98,8 +100,8 @@ consoleread(int user_dst, u64 dst, int n)
c = cons.buf[cons.r++ % INPUT_BUF_SIZE];
if(c == C('D')){ // end-of-file
if(n < target){
if(c == C('D')) { // end-of-file
if(n < target) {
// Save ^D for next time, to make sure
// caller gets a 0-byte result.
cons.r--;
@ -115,7 +117,7 @@ consoleread(int user_dst, u64 dst, int n)
dst++;
--n;
if(c == '\n'){
if(c == '\n') {
// a whole line has arrived, return to
// the user-level read().
break;
@ -137,26 +139,25 @@ consoleintr(int c)
{
acquire(&cons.lock);
switch(c){
case C('P'): // Print process list.
switch(c) {
case C('P'): // Print process list.
procdump();
break;
case C('U'): // Kill line.
while(cons.e != cons.w &&
cons.buf[(cons.e-1) % INPUT_BUF_SIZE] != '\n'){
case C('U'): // Kill line.
while(cons.e != cons.w && cons.buf[(cons.e - 1) % INPUT_BUF_SIZE] != '\n') {
cons.e--;
consputc(BACKSPACE);
}
break;
case C('H'): // Backspace
case '\x7f': // Delete key
if(cons.e != cons.w){
if(cons.e != cons.w) {
cons.e--;
consputc(BACKSPACE);
}
break;
default:
if(c != 0 && cons.e-cons.r < INPUT_BUF_SIZE){
if(c != 0 && cons.e - cons.r < INPUT_BUF_SIZE) {
c = (c == '\r') ? '\n' : c;
// echo back to the user.
@ -165,7 +166,7 @@ consoleintr(int c)
// store for consumption by consoleread().
cons.buf[cons.e++ % INPUT_BUF_SIZE] = c;
if(c == '\n' || c == C('D') || cons.e-cons.r == INPUT_BUF_SIZE){
if(c == '\n' || c == C('D') || cons.e - cons.r == INPUT_BUF_SIZE) {
// wake up consoleread() if a whole line (or end-of-file)
// has arrived.
cons.w = cons.e;
@ -174,7 +175,7 @@ consoleintr(int c)
}
break;
}
release(&cons.lock);
}

View file

@ -10,180 +10,180 @@ struct stat;
struct superblock;
// bio.c
void binit(void);
struct buf* bread(u32, u32);
void brelse(struct buf*);
void bwrite(struct buf*);
void bpin(struct buf*);
void bunpin(struct buf*);
void binit(void);
struct buf *bread(u32, u32);
void brelse(struct buf *);
void bwrite(struct buf *);
void bpin(struct buf *);
void bunpin(struct buf *);
// console.c
void consoleinit(void);
void consoleintr(int);
void consputc(int);
void consoleinit(void);
void consoleintr(int);
void consputc(int);
// exec.c
int exec(char*, char**);
int exec(char *, char **);
// file.c
struct file* filealloc(void);
void fileclose(struct file*);
struct file* filedup(struct file*);
void fileinit(void);
int fileread(struct file*, u64, int n);
int filestat(struct file*, u64 addr);
int filewrite(struct file*, u64, int n);
struct file *filealloc(void);
void fileclose(struct file *);
struct file *filedup(struct file *);
void fileinit(void);
int fileread(struct file *, u64, int n);
int filestat(struct file *, u64 addr);
int filewrite(struct file *, u64, int n);
// fs.c
void fsinit(int);
int dirlink(struct inode*, char*, u32);
struct inode* dirlookup(struct inode*, char*, u32*);
struct inode* ialloc(u32, short);
struct inode* idup(struct inode*);
void iinit();
void ilock(struct inode*);
void iput(struct inode*);
void iunlock(struct inode*);
void iunlockput(struct inode*);
void iupdate(struct inode*);
int namecmp(const char*, const char*);
struct inode* namei(char*);
struct inode* nameiparent(char*, char*);
int readi(struct inode*, int, u64, u32, u32);
void stati(struct inode*, struct stat*);
int writei(struct inode*, int, u64, u32, u32);
void itrunc(struct inode*);
void fsinit(int);
int dirlink(struct inode *, char *, u32);
struct inode *dirlookup(struct inode *, char *, u32 *);
struct inode *ialloc(u32, short);
struct inode *idup(struct inode *);
void iinit();
void ilock(struct inode *);
void iput(struct inode *);
void iunlock(struct inode *);
void iunlockput(struct inode *);
void iupdate(struct inode *);
int namecmp(const char *, const char *);
struct inode *namei(char *);
struct inode *nameiparent(char *, char *);
int readi(struct inode *, int, u64, u32, u32);
void stati(struct inode *, struct stat *);
int writei(struct inode *, int, u64, u32, u32);
void itrunc(struct inode *);
// ramdisk.c
void ramdiskinit(void);
void ramdiskintr(void);
void ramdiskrw(struct buf*);
void ramdiskinit(void);
void ramdiskintr(void);
void ramdiskrw(struct buf *);
// kalloc.c
void* kalloc(void);
void kfree(void *);
void kinit(void);
void *kalloc(void);
void kfree(void *);
void kinit(void);
// log.c
void initlog(int, struct superblock*);
void log_write(struct buf*);
void begin_op(void);
void end_op(void);
void initlog(int, struct superblock *);
void log_write(struct buf *);
void begin_op(void);
void end_op(void);
// pipe.c
int pipealloc(struct file**, struct file**);
void pipeclose(struct pipe*, int);
int piperead(struct pipe*, u64, int);
int pipewrite(struct pipe*, u64, int);
int pipealloc(struct file **, struct file **);
void pipeclose(struct pipe *, int);
int piperead(struct pipe *, u64, int);
int pipewrite(struct pipe *, u64, int);
// printf.c
void printf(char*, ...);
void panic(char*) __attribute__((noreturn));
void printfinit(void);
void printf(char *, ...);
void panic(char *) __attribute__((noreturn));
void printfinit(void);
// proc.c
int cpuid(void);
void exit(int);
int fork(void);
int growproc(int);
void proc_mapstacks(pagetable_t);
pagetable_t proc_pagetable(struct proc *);
void proc_freepagetable(pagetable_t, u64);
int kill(int);
int killed(struct proc*);
void setkilled(struct proc*);
struct cpu* mycpu(void);
struct cpu* getmycpu(void);
struct proc* myproc();
void procinit(void);
void scheduler(void) __attribute__((noreturn));
void sched(void);
void sleep(void*, struct spinlock*);
void userinit(void);
int wait(u64);
void wakeup(void*);
void yield(void);
int either_copyout(int user_dst, u64 dst, void *src, u64 len);
int either_copyin(void *dst, int user_src, u64 src, u64 len);
void procdump(void);
int cpuid(void);
void exit(int);
int fork(void);
int growproc(int);
void proc_mapstacks(pagetable_t);
pagetable_t proc_pagetable(struct proc *);
void proc_freepagetable(pagetable_t, u64);
int kill(int);
int killed(struct proc *);
void setkilled(struct proc *);
struct cpu *mycpu(void);
struct cpu *getmycpu(void);
struct proc *myproc();
void procinit(void);
void scheduler(void) __attribute__((noreturn));
void sched(void);
void sleep(void *, struct spinlock *);
void userinit(void);
int wait(u64);
void wakeup(void *);
void yield(void);
int either_copyout(int user_dst, u64 dst, void *src, u64 len);
int either_copyin(void *dst, int user_src, u64 src, u64 len);
void procdump(void);
// swtch.S
void swtch(struct context*, struct context*);
void swtch(struct context *, struct context *);
// spinlock.c
void acquire(struct spinlock*);
int holding(struct spinlock*);
void initlock(struct spinlock*, char*);
void release(struct spinlock*);
void push_off(void);
void pop_off(void);
void acquire(struct spinlock *);
int holding(struct spinlock *);
void initlock(struct spinlock *, char *);
void release(struct spinlock *);
void push_off(void);
void pop_off(void);
// sleeplock.c
void acquiresleep(struct sleeplock*);
void releasesleep(struct sleeplock*);
int holdingsleep(struct sleeplock*);
void initsleeplock(struct sleeplock*, char*);
void acquiresleep(struct sleeplock *);
void releasesleep(struct sleeplock *);
int holdingsleep(struct sleeplock *);
void initsleeplock(struct sleeplock *, char *);
// string.c
int memcmp(const void*, const void*, u32);
void* memmove(void*, const void*, u32);
void* memset(void*, int, u32);
char* safestrcpy(char*, const char*, int);
int strlen(const char*);
int strncmp(const char*, const char*, u32);
char* strncpy(char*, const char*, int);
int memcmp(const void *, const void *, u32);
void *memmove(void *, const void *, u32);
void *memset(void *, int, u32);
char *safestrcpy(char *, const char *, int);
int strlen(const char *);
int strncmp(const char *, const char *, u32);
char *strncpy(char *, const char *, int);
// syscall.c
void argint(int, int*);
int argstr(int, char*, int);
void argaddr(int, u64 *);
int fetchstr(u64, char*, int);
int fetchaddr(u64, u64*);
void syscall();
void argint(int, int *);
int argstr(int, char *, int);
void argaddr(int, u64 *);
int fetchstr(u64, char *, int);
int fetchaddr(u64, u64 *);
void syscall();
// trap.c
extern u32 ticks;
void trapinit(void);
void trapinithart(void);
extern u32 ticks;
void trapinit(void);
void trapinithart(void);
extern struct spinlock tickslock;
void usertrapret(void);
void usertrapret(void);
// uart.c
void uartinit(void);
void uartintr(void);
void uartputc(int);
void uartputc_sync(int);
int uartgetc(void);
void uartinit(void);
void uartintr(void);
void uartputc(int);
void uartputc_sync(int);
int uartgetc(void);
// vm.c
void kvminit(void);
void kvminithart(void);
void kvmmap(pagetable_t, u64, u64, u64, int);
int mappages(pagetable_t, u64, u64, u64, int);
pagetable_t uvmcreate(void);
void uvmfirst(pagetable_t, u8 *, u32);
u64 uvmalloc(pagetable_t, u64, u64, int);
u64 uvmdealloc(pagetable_t, u64, u64);
int uvmcopy(pagetable_t, pagetable_t, u64);
void uvmfree(pagetable_t, u64);
void uvmunmap(pagetable_t, u64, u64, int);
void uvmclear(pagetable_t, u64);
pte_t * walk(pagetable_t, u64, int);
u64 walkaddr(pagetable_t, u64);
int copyout(pagetable_t, u64, char *, u64);
int copyin(pagetable_t, char *, u64, u64);
int copyinstr(pagetable_t, char *, u64, u64);
void kvminit(void);
void kvminithart(void);
void kvmmap(pagetable_t, u64, u64, u64, int);
int mappages(pagetable_t, u64, u64, u64, int);
pagetable_t uvmcreate(void);
void uvmfirst(pagetable_t, u8 *, u32);
u64 uvmalloc(pagetable_t, u64, u64, int);
u64 uvmdealloc(pagetable_t, u64, u64);
int uvmcopy(pagetable_t, pagetable_t, u64);
void uvmfree(pagetable_t, u64);
void uvmunmap(pagetable_t, u64, u64, int);
void uvmclear(pagetable_t, u64);
pte_t *walk(pagetable_t, u64, int);
u64 walkaddr(pagetable_t, u64);
int copyout(pagetable_t, u64, char *, u64);
int copyin(pagetable_t, char *, u64, u64);
int copyinstr(pagetable_t, char *, u64, u64);
// plic.c
void plicinit(void);
void plicinithart(void);
int plic_claim(void);
void plic_complete(int);
void plicinit(void);
void plicinithart(void);
int plic_claim(void);
void plic_complete(int);
// virtio_disk.c
void virtio_disk_init(void);
void virtio_disk_rw(struct buf *, int);
void virtio_disk_intr(void);
void virtio_disk_init(void);
void virtio_disk_rw(struct buf *, int);
void virtio_disk_intr(void);
// number of elements in fixed-size array
#define NELEM(x) (sizeof(x)/sizeof((x)[0]))
#define NELEM(x) (sizeof(x) / sizeof((x)[0]))

View file

@ -1,11 +1,11 @@
// Format of an ELF executable file
#define ELF_MAGIC 0x464C457FU // "\x7FELF" in little endian
#define ELF_MAGIC 0x464C457FU // "\x7FELF" in little endian
// File header
struct elfhdr {
u32 magic; // must equal ELF_MAGIC
u8 elf[12];
u32 magic; // must equal ELF_MAGIC
u8 elf[12];
u16 type;
u16 machine;
u32 version;
@ -34,9 +34,9 @@ struct proghdr {
};
// Values for Proghdr type
#define ELF_PROG_LOAD 1
#define ELF_PROG_LOAD 1
// Flag bits for Proghdr flags
#define ELF_PROG_FLAG_EXEC 1
#define ELF_PROG_FLAG_WRITE 2
#define ELF_PROG_FLAG_READ 4
#define ELF_PROG_FLAG_EXEC 1
#define ELF_PROG_FLAG_WRITE 2
#define ELF_PROG_FLAG_READ 4

View file

@ -9,31 +9,32 @@
static int loadseg(pde_t *, u64, struct inode *, u32, u32);
int flags2perm(int flags)
int
flags2perm(int flags)
{
int perm = 0;
if(flags & 0x1)
perm = PTE_X;
if(flags & 0x2)
perm |= PTE_W;
return perm;
int perm = 0;
if(flags & 0x1)
perm = PTE_X;
if(flags & 0x2)
perm |= PTE_W;
return perm;
}
int
exec(char *path, char **argv)
{
char *s, *last;
int i, off;
u64 argc, sz = 0, sp, ustack[MAXARG], stackbase;
struct elfhdr elf;
struct inode *ip;
char *s, *last;
int i, off;
u64 argc, sz = 0, sp, ustack[MAXARG], stackbase;
struct elfhdr elf;
struct inode *ip;
struct proghdr ph;
pagetable_t pagetable = 0, oldpagetable;
struct proc *p = myproc();
pagetable_t pagetable = 0, oldpagetable;
struct proc *p = myproc();
begin_op();
if((ip = namei(path)) == 0){
if((ip = namei(path)) == 0) {
end_op();
return -1;
}
@ -50,7 +51,7 @@ exec(char *path, char **argv)
goto bad;
// Load program into memory.
for(i=0, off=elf.phoff; i<elf.phnum; i++, off+=sizeof(ph)){
for(i = 0, off = elf.phoff; i < elf.phnum; i++, off += sizeof(ph)) {
if(readi(ip, 0, (u64)&ph, off, sizeof(ph)) != sizeof(ph))
goto bad;
if(ph.type != ELF_PROG_LOAD)
@ -80,10 +81,10 @@ exec(char *path, char **argv)
// Use the second as the user stack.
sz = PGROUNDUP(sz);
u64 sz1;
if((sz1 = uvmalloc(pagetable, sz, sz + 2*PGSIZE, PTE_W)) == 0)
if((sz1 = uvmalloc(pagetable, sz, sz + 2 * PGSIZE, PTE_W)) == 0)
goto bad;
sz = sz1;
uvmclear(pagetable, sz-2*PGSIZE);
uvmclear(pagetable, sz - 2 * PGSIZE);
sp = sz;
stackbase = sp - PGSIZE;
@ -102,11 +103,11 @@ exec(char *path, char **argv)
ustack[argc] = 0;
// push the array of argv[] pointers.
sp -= (argc+1) * sizeof(u64);
sp -= (argc + 1) * sizeof(u64);
sp -= sp % 16;
if(sp < stackbase)
goto bad;
if(copyout(pagetable, sp, (char *)ustack, (argc+1)*sizeof(u64)) < 0)
if(copyout(pagetable, sp, (char *)ustack, (argc + 1) * sizeof(u64)) < 0)
goto bad;
// arguments to user main(argc, argv)
@ -115,25 +116,25 @@ exec(char *path, char **argv)
p->trapframe->a1 = sp;
// Save program name for debugging.
for(last=s=path; *s; s++)
for(last = s = path; *s; s++)
if(*s == '/')
last = s+1;
last = s + 1;
safestrcpy(p->name, last, sizeof(p->name));
// Commit to the user image.
oldpagetable = p->pagetable;
p->pagetable = pagetable;
p->sz = sz;
p->trapframe->epc = elf.entry; // initial program counter = main
p->trapframe->sp = sp; // initial stack pointer
p->trapframe->epc = elf.entry; // initial program counter = main
p->trapframe->sp = sp; // initial stack pointer
proc_freepagetable(oldpagetable, oldsz);
return argc; // this ends up in a0, the first argument to main(argc, argv)
bad:
bad:
if(pagetable)
proc_freepagetable(pagetable, sz);
if(ip){
if(ip) {
iunlockput(ip);
end_op();
}
@ -150,7 +151,7 @@ loadseg(pagetable_t pagetable, u64 va, struct inode *ip, u32 offset, u32 sz)
u32 i, n;
u64 pa;
for(i = 0; i < sz; i += PGSIZE){
for(i = 0; i < sz; i += PGSIZE) {
pa = walkaddr(pagetable, va + i);
if(pa == 0)
panic("loadseg: address should exist");
@ -158,9 +159,9 @@ loadseg(pagetable_t pagetable, u64 va, struct inode *ip, u32 offset, u32 sz)
n = sz - i;
else
n = PGSIZE;
if(readi(ip, 0, (u64)pa, offset+i, n) != n)
if(readi(ip, 0, (u64)pa, offset + i, n) != n)
return -1;
}
return 0;
}

View file

@ -1,5 +1,5 @@
#define O_RDONLY 0x000
#define O_WRONLY 0x001
#define O_RDWR 0x002
#define O_CREATE 0x200
#define O_TRUNC 0x400
#define O_RDONLY 0x000
#define O_WRONLY 0x001
#define O_RDWR 0x002
#define O_CREATE 0x200
#define O_TRUNC 0x400

View file

@ -16,7 +16,7 @@
struct devsw devsw[NDEV];
struct {
struct spinlock lock;
struct file file[NFILE];
struct file file[NFILE];
} ftable;
void
@ -26,14 +26,14 @@ fileinit(void)
}
// Allocate a file structure.
struct file*
struct file *
filealloc(void)
{
struct file *f;
acquire(&ftable.lock);
for(f = ftable.file; f < ftable.file + NFILE; f++){
if(f->ref == 0){
for(f = ftable.file; f < ftable.file + NFILE; f++) {
if(f->ref == 0) {
f->ref = 1;
release(&ftable.lock);
return f;
@ -44,7 +44,7 @@ filealloc(void)
}
// Increment ref count for file f.
struct file*
struct file *
filedup(struct file *f)
{
acquire(&ftable.lock);
@ -64,7 +64,7 @@ fileclose(struct file *f)
acquire(&ftable.lock);
if(f->ref < 1)
panic("fileclose");
if(--f->ref > 0){
if(--f->ref > 0) {
release(&ftable.lock);
return;
}
@ -73,9 +73,9 @@ fileclose(struct file *f)
f->type = FD_NONE;
release(&ftable.lock);
if(ff.type == FD_PIPE){
if(ff.type == FD_PIPE) {
pipeclose(ff.pipe, ff.writable);
} else if(ff.type == FD_INODE || ff.type == FD_DEVICE){
} else if(ff.type == FD_INODE || ff.type == FD_DEVICE) {
begin_op();
iput(ff.ip);
end_op();
@ -88,9 +88,9 @@ int
filestat(struct file *f, u64 addr)
{
struct proc *p = myproc();
struct stat st;
if(f->type == FD_INODE || f->type == FD_DEVICE){
struct stat st;
if(f->type == FD_INODE || f->type == FD_DEVICE) {
ilock(f->ip);
stati(f->ip, &st);
iunlock(f->ip);
@ -111,13 +111,13 @@ fileread(struct file *f, u64 addr, int n)
if(f->readable == 0)
return -1;
if(f->type == FD_PIPE){
if(f->type == FD_PIPE) {
r = piperead(f->pipe, addr, n);
} else if(f->type == FD_DEVICE){
} else if(f->type == FD_DEVICE) {
if(f->major < 0 || f->major >= NDEV || !devsw[f->major].read)
return -1;
r = devsw[f->major].read(1, addr, n);
} else if(f->type == FD_INODE){
} else if(f->type == FD_INODE) {
ilock(f->ip);
if((r = readi(f->ip, 1, addr, f->off, n)) > 0)
f->off += r;
@ -139,34 +139,34 @@ filewrite(struct file *f, u64 addr, int n)
if(f->writable == 0)
return -1;
if(f->type == FD_PIPE){
if(f->type == FD_PIPE) {
ret = pipewrite(f->pipe, addr, n);
} else if(f->type == FD_DEVICE){
} else if(f->type == FD_DEVICE) {
if(f->major < 0 || f->major >= NDEV || !devsw[f->major].write)
return -1;
ret = devsw[f->major].write(1, addr, n);
} else if(f->type == FD_INODE){
} else if(f->type == FD_INODE) {
// write a few blocks at a time to avoid exceeding
// the maximum log transaction size, including
// i-node, indirect block, allocation blocks,
// and 2 blocks of slop for non-aligned writes.
// this really belongs lower down, since writei()
// might be writing a device like the console.
int max = ((MAXOPBLOCKS-1-1-2) / 2) * BSIZE;
int max = ((MAXOPBLOCKS - 1 - 1 - 2) / 2) * BSIZE;
int i = 0;
while(i < n){
while(i < n) {
int n1 = n - i;
if(n1 > max)
n1 = max;
begin_op();
ilock(f->ip);
if ((r = writei(f->ip, 1, addr + i, f->off, n1)) > 0)
if((r = writei(f->ip, 1, addr + i, f->off, n1)) > 0)
f->off += r;
iunlock(f->ip);
end_op();
if(r != n1){
if(r != n1) {
// error from writei
break;
}
@ -179,4 +179,3 @@ filewrite(struct file *f, u64 addr, int n)
return ret;
}

View file

@ -1,32 +1,32 @@
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE, FD_DEVICE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe; // FD_PIPE
struct inode *ip; // FD_INODE and FD_DEVICE
u32 off; // FD_INODE
short major; // FD_DEVICE
int ref; // reference count
char readable;
char writable;
struct pipe *pipe; // FD_PIPE
struct inode *ip; // FD_INODE and FD_DEVICE
u32 off; // FD_INODE
short major; // FD_DEVICE
};
#define major(dev) ((dev) >> 16 & 0xFFFF)
#define minor(dev) ((dev) & 0xFFFF)
#define mkdev(m,n) ((u32)((m)<<16| (n)))
#define mkdev(m, n) ((u32)((m) << 16 | (n)))
// in-memory copy of an inode
struct inode {
u32 dev; // Device number
u32 inum; // Inode number
int ref; // Reference count
struct sleeplock lock; // protects everything below here
int valid; // inode has been read from disk?
u32 dev; // Device number
u32 inum; // Inode number
int ref; // Reference count
struct sleeplock lock; // protects everything below here
int valid; // inode has been read from disk?
short type; // copy of disk inode
short type; // copy of disk inode
short major;
short minor;
short nlink;
u32 size;
u32 addrs[NDIRECT+1];
u32 size;
u32 addrs[NDIRECT + 1];
};
// map major device number to device functions.

View file

@ -24,7 +24,7 @@
#define min(a, b) ((a) < (b) ? (a) : (b))
// there should be one superblock per disk device, but we run with
// only one device
struct superblock sb;
struct superblock sb;
// Read the super block.
static void
@ -39,7 +39,8 @@ readsb(int dev, struct superblock *sb)
// Init fs
void
fsinit(int dev) {
fsinit(int dev)
{
readsb(dev, &sb);
if(sb.magic != FSMAGIC)
panic("invalid file system");
@ -65,16 +66,16 @@ bzero(int dev, int bno)
static u32
balloc(u32 dev)
{
int b, bi, m;
int b, bi, m;
struct buf *bp;
bp = 0;
for(b = 0; b < sb.size; b += BPB){
for(b = 0; b < sb.size; b += BPB) {
bp = bread(dev, BBLOCK(b, sb));
for(bi = 0; bi < BPB && b + bi < sb.size; bi++){
for(bi = 0; bi < BPB && b + bi < sb.size; bi++) {
m = 1 << (bi % 8);
if((bp->data[bi/8] & m) == 0){ // Is block free?
bp->data[bi/8] |= m; // Mark block in use.
if((bp->data[bi / 8] & m) == 0) { // Is block free?
bp->data[bi / 8] |= m; // Mark block in use.
log_write(bp);
brelse(bp);
bzero(dev, b + bi);
@ -92,14 +93,14 @@ static void
bfree(int dev, u32 b)
{
struct buf *bp;
int bi, m;
int bi, m;
bp = bread(dev, BBLOCK(b, sb));
bi = b % BPB;
m = 1 << (bi % 8);
if((bp->data[bi/8] & m) == 0)
if((bp->data[bi / 8] & m) == 0)
panic("freeing free block");
bp->data[bi/8] &= ~m;
bp->data[bi / 8] &= ~m;
log_write(bp);
brelse(bp);
}
@ -175,40 +176,40 @@ bfree(int dev, u32 b)
struct {
struct spinlock lock;
struct inode inode[NINODE];
struct inode inode[NINODE];
} itable;
void
iinit()
{
int i = 0;
initlock(&itable.lock, "itable");
for(i = 0; i < NINODE; i++) {
initsleeplock(&itable.inode[i].lock, "inode");
}
}
static struct inode* iget(u32 dev, u32 inum);
static struct inode *iget(u32 dev, u32 inum);
// Allocate an inode on device dev.
// Mark it as allocated by giving it type type.
// Returns an unlocked but allocated and referenced inode,
// or NULL if there is no free inode.
struct inode*
struct inode *
ialloc(u32 dev, short type)
{
int inum;
struct buf *bp;
int inum;
struct buf *bp;
struct dinode *dip;
for(inum = 1; inum < sb.ninodes; inum++){
for(inum = 1; inum < sb.ninodes; inum++) {
bp = bread(dev, IBLOCK(inum, sb));
dip = (struct dinode*)bp->data + inum%IPB;
if(dip->type == 0){ // a free inode
dip = (struct dinode *)bp->data + inum % IPB;
if(dip->type == 0) { // a free inode
memset(dip, 0, sizeof(*dip));
dip->type = type;
log_write(bp); // mark it allocated on the disk
log_write(bp); // mark it allocated on the disk
brelse(bp);
return iget(dev, inum);
}
@ -225,11 +226,11 @@ ialloc(u32 dev, short type)
void
iupdate(struct inode *ip)
{
struct buf *bp;
struct buf *bp;
struct dinode *dip;
bp = bread(ip->dev, IBLOCK(ip->inum, sb));
dip = (struct dinode*)bp->data + ip->inum%IPB;
dip = (struct dinode *)bp->data + ip->inum % IPB;
dip->type = ip->type;
dip->major = ip->major;
dip->minor = ip->minor;
@ -243,7 +244,7 @@ iupdate(struct inode *ip)
// Find the inode with number inum on device dev
// and return the in-memory copy. Does not lock
// the inode and does not read it from disk.
static struct inode*
static struct inode *
iget(u32 dev, u32 inum)
{
struct inode *ip, *empty;
@ -252,13 +253,13 @@ iget(u32 dev, u32 inum)
// Is the inode already in the table?
empty = 0;
for(ip = &itable.inode[0]; ip < &itable.inode[NINODE]; ip++){
if(ip->ref > 0 && ip->dev == dev && ip->inum == inum){
for(ip = &itable.inode[0]; ip < &itable.inode[NINODE]; ip++) {
if(ip->ref > 0 && ip->dev == dev && ip->inum == inum) {
ip->ref++;
release(&itable.lock);
return ip;
}
if(empty == 0 && ip->ref == 0) // Remember empty slot.
if(empty == 0 && ip->ref == 0) // Remember empty slot.
empty = ip;
}
@ -278,7 +279,7 @@ iget(u32 dev, u32 inum)
// Increment reference count for ip.
// Returns ip to enable ip = idup(ip1) idiom.
struct inode*
struct inode *
idup(struct inode *ip)
{
acquire(&itable.lock);
@ -292,7 +293,7 @@ idup(struct inode *ip)
void
ilock(struct inode *ip)
{
struct buf *bp;
struct buf *bp;
struct dinode *dip;
if(ip == 0 || ip->ref < 1)
@ -300,9 +301,9 @@ ilock(struct inode *ip)
acquiresleep(&ip->lock);
if(ip->valid == 0){
if(ip->valid == 0) {
bp = bread(ip->dev, IBLOCK(ip->inum, sb));
dip = (struct dinode*)bp->data + ip->inum%IPB;
dip = (struct dinode *)bp->data + ip->inum % IPB;
ip->type = dip->type;
ip->major = dip->major;
ip->minor = dip->minor;
@ -338,7 +339,7 @@ iput(struct inode *ip)
{
acquire(&itable.lock);
if(ip->ref == 1 && ip->valid && ip->nlink == 0){
if(ip->ref == 1 && ip->valid && ip->nlink == 0) {
// inode has no links and no other references: truncate and free.
// ip->ref == 1 means no other process can have ip locked,
@ -382,11 +383,11 @@ iunlockput(struct inode *ip)
static u32
bmap(struct inode *ip, u32 bn)
{
u32 addr, *a;
u32 addr, *a;
struct buf *bp;
if(bn < NDIRECT){
if((addr = ip->addrs[bn]) == 0){
if(bn < NDIRECT) {
if((addr = ip->addrs[bn]) == 0) {
addr = balloc(ip->dev);
if(addr == 0)
return 0;
@ -396,19 +397,19 @@ bmap(struct inode *ip, u32 bn)
}
bn -= NDIRECT;
if(bn < NINDIRECT){
if(bn < NINDIRECT) {
// Load indirect block, allocating if necessary.
if((addr = ip->addrs[NDIRECT]) == 0){
if((addr = ip->addrs[NDIRECT]) == 0) {
addr = balloc(ip->dev);
if(addr == 0)
return 0;
ip->addrs[NDIRECT] = addr;
}
bp = bread(ip->dev, addr);
a = (u32*)bp->data;
if((addr = a[bn]) == 0){
a = (u32 *)bp->data;
if((addr = a[bn]) == 0) {
addr = balloc(ip->dev);
if(addr){
if(addr) {
a[bn] = addr;
log_write(bp);
}
@ -425,21 +426,21 @@ bmap(struct inode *ip, u32 bn)
void
itrunc(struct inode *ip)
{
int i, j;
int i, j;
struct buf *bp;
u32 *a;
u32 *a;
for(i = 0; i < NDIRECT; i++){
if(ip->addrs[i]){
for(i = 0; i < NDIRECT; i++) {
if(ip->addrs[i]) {
bfree(ip->dev, ip->addrs[i]);
ip->addrs[i] = 0;
}
}
if(ip->addrs[NDIRECT]){
if(ip->addrs[NDIRECT]) {
bp = bread(ip->dev, ip->addrs[NDIRECT]);
a = (u32*)bp->data;
for(j = 0; j < NINDIRECT; j++){
a = (u32 *)bp->data;
for(j = 0; j < NINDIRECT; j++) {
if(a[j])
bfree(ip->dev, a[j]);
}
@ -471,7 +472,7 @@ stati(struct inode *ip, struct stat *st)
int
readi(struct inode *ip, int user_dst, u64 dst, u32 off, u32 n)
{
u32 tot, m;
u32 tot, m;
struct buf *bp;
if(off > ip->size || off + n < off)
@ -479,12 +480,12 @@ readi(struct inode *ip, int user_dst, u64 dst, u32 off, u32 n)
if(off + n > ip->size)
n = ip->size - off;
for(tot=0; tot<n; tot+=m, off+=m, dst+=m){
u32 addr = bmap(ip, off/BSIZE);
for(tot = 0; tot < n; tot += m, off += m, dst += m) {
u32 addr = bmap(ip, off / BSIZE);
if(addr == 0)
break;
bp = bread(ip->dev, addr);
m = min(n - tot, BSIZE - off%BSIZE);
m = min(n - tot, BSIZE - off % BSIZE);
if(either_copyout(user_dst, dst, bp->data + (off % BSIZE), m) == -1) {
brelse(bp);
tot = -1;
@ -505,20 +506,20 @@ readi(struct inode *ip, int user_dst, u64 dst, u32 off, u32 n)
int
writei(struct inode *ip, int user_src, u64 src, u32 off, u32 n)
{
u32 tot, m;
u32 tot, m;
struct buf *bp;
if(off > ip->size || off + n < off)
return -1;
if(off + n > MAXFILE*BSIZE)
if(off + n > MAXFILE * BSIZE)
return -1;
for(tot=0; tot<n; tot+=m, off+=m, src+=m){
u32 addr = bmap(ip, off/BSIZE);
for(tot = 0; tot < n; tot += m, off += m, src += m) {
u32 addr = bmap(ip, off / BSIZE);
if(addr == 0)
break;
bp = bread(ip->dev, addr);
m = min(n - tot, BSIZE - off%BSIZE);
m = min(n - tot, BSIZE - off % BSIZE);
if(either_copyin(bp->data + (off % BSIZE), user_src, src, m) == -1) {
brelse(bp);
break;
@ -548,21 +549,21 @@ namecmp(const char *s, const char *t)
// Look for a directory entry in a directory.
// If found, set *poff to byte offset of entry.
struct inode*
struct inode *
dirlookup(struct inode *dp, char *name, u32 *poff)
{
u32 off, inum;
u32 off, inum;
struct dirent de;
if(dp->type != T_DIR)
panic("dirlookup not DIR");
for(off = 0; off < dp->size; off += sizeof(de)){
for(off = 0; off < dp->size; off += sizeof(de)) {
if(readi(dp, 0, (u64)&de, off, sizeof(de)) != sizeof(de))
panic("dirlookup read");
if(de.inum == 0)
continue;
if(namecmp(name, de.name) == 0){
if(namecmp(name, de.name) == 0) {
// entry matches path element
if(poff)
*poff = off;
@ -579,18 +580,18 @@ dirlookup(struct inode *dp, char *name, u32 *poff)
int
dirlink(struct inode *dp, char *name, u32 inum)
{
int off;
int off;
struct dirent de;
struct inode *ip;
// Check that name is not present.
if((ip = dirlookup(dp, name, 0)) != 0){
if((ip = dirlookup(dp, name, 0)) != 0) {
iput(ip);
return -1;
}
// Look for an empty dirent.
for(off = 0; off < dp->size; off += sizeof(de)){
for(off = 0; off < dp->size; off += sizeof(de)) {
if(readi(dp, 0, (u64)&de, off, sizeof(de)) != sizeof(de))
panic("dirlink read");
if(de.inum == 0)
@ -619,11 +620,11 @@ dirlink(struct inode *dp, char *name, u32 inum)
// skipelem("a", name) = "", setting name = "a"
// skipelem("", name) = skipelem("////", name) = 0
//
static char*
static char *
skipelem(char *path, char *name)
{
char *s;
int len;
int len;
while(*path == '/')
path++;
@ -648,7 +649,7 @@ skipelem(char *path, char *name)
// If parent != 0, return the inode for the parent and copy the final
// path element into name, which must have room for DIRSIZ bytes.
// Must be called inside a transaction since it calls iput().
static struct inode*
static struct inode *
namex(char *path, int nameiparent, char *name)
{
struct inode *ip, *next;
@ -658,39 +659,39 @@ namex(char *path, int nameiparent, char *name)
else
ip = idup(myproc()->cwd);
while((path = skipelem(path, name)) != 0){
while((path = skipelem(path, name)) != 0) {
ilock(ip);
if(ip->type != T_DIR){
if(ip->type != T_DIR) {
iunlockput(ip);
return 0;
}
if(nameiparent && *path == '\0'){
if(nameiparent && *path == '\0') {
// Stop one level early.
iunlock(ip);
return ip;
}
if((next = dirlookup(ip, name, 0)) == 0){
if((next = dirlookup(ip, name, 0)) == 0) {
iunlockput(ip);
return 0;
}
iunlockput(ip);
ip = next;
}
if(nameiparent){
if(nameiparent) {
iput(ip);
return 0;
}
return ip;
}
struct inode*
struct inode *
namei(char *path)
{
char name[DIRSIZ];
return namex(path, 0, name);
}
struct inode*
struct inode *
nameiparent(char *path, char *name)
{
return namex(path, 1, name);

View file

@ -1,9 +1,8 @@
// On-disk file system format.
// Both the kernel and user programs use this header file.
#define ROOTINO 1 // root i-number
#define BSIZE 1024 // block size
#define ROOTINO 1 // root i-number
#define BSIZE 1024 // block size
// Disk layout:
// [ boot block | super block | log | inode blocks |
@ -12,49 +11,48 @@
// mkfs computes the super block and builds an initial file system. The
// super block describes the disk layout:
struct superblock {
u32 magic; // Must be FSMAGIC
u32 size; // Size of file system image (blocks)
u32 nblocks; // Number of data blocks
u32 ninodes; // Number of inodes.
u32 nlog; // Number of log blocks
u32 logstart; // Block number of first log block
u32 inodestart; // Block number of first inode block
u32 bmapstart; // Block number of first free map block
u32 magic; // Must be FSMAGIC
u32 size; // Size of file system image (blocks)
u32 nblocks; // Number of data blocks
u32 ninodes; // Number of inodes.
u32 nlog; // Number of log blocks
u32 logstart; // Block number of first log block
u32 inodestart; // Block number of first inode block
u32 bmapstart; // Block number of first free map block
};
#define FSMAGIC 0x10203040
#define NDIRECT 12
#define NDIRECT 12
#define NINDIRECT (BSIZE / sizeof(u32))
#define MAXFILE (NDIRECT + NINDIRECT)
#define MAXFILE (NDIRECT + NINDIRECT)
// On-disk inode structure
struct dinode {
short type; // File type
short major; // Major device number (T_DEVICE only)
short minor; // Minor device number (T_DEVICE only)
short nlink; // Number of links to inode in file system
u32 size; // Size of file (bytes)
u32 addrs[NDIRECT+1]; // Data block addresses
short type; // File type
short major; // Major device number (T_DEVICE only)
short minor; // Minor device number (T_DEVICE only)
short nlink; // Number of links to inode in file system
u32 size; // Size of file (bytes)
u32 addrs[NDIRECT + 1]; // Data block addresses
};
// Inodes per block.
#define IPB (BSIZE / sizeof(struct dinode))
#define IPB (BSIZE / sizeof(struct dinode))
// Block containing inode i
#define IBLOCK(i, sb) ((i) / IPB + sb.inodestart)
#define IBLOCK(i, sb) ((i) / IPB + sb.inodestart)
// Bitmap bits per block
#define BPB (BSIZE*8)
#define BPB (BSIZE * 8)
// Block of free map containing bit for block b
#define BBLOCK(b, sb) ((b)/BPB + sb.bmapstart)
#define BBLOCK(b, sb) ((b) / BPB + sb.bmapstart)
// Directory is a file containing a sequence of dirent structures.
#define DIRSIZ 14
struct dirent {
u16 inum;
u16 inum;
char name[DIRSIZ];
};

View file

@ -20,22 +20,22 @@ struct run {
struct {
struct spinlock lock;
struct run *freelist;
struct run *freelist;
} kmem;
void
kinit()
{
initlock(&kmem.lock, "kmem");
freerange(end, (void*)PHYSTOP);
freerange(end, (void *)PHYSTOP);
}
void
freerange(void *pa_start, void *pa_end)
{
char *p;
p = (char*)PGROUNDUP((u64)pa_start);
for(; p + PGSIZE <= (char*)pa_end; p += PGSIZE)
p = (char *)PGROUNDUP((u64)pa_start);
for(; p + PGSIZE <= (char *)pa_end; p += PGSIZE)
kfree(p);
}
@ -48,13 +48,13 @@ kfree(void *pa)
{
struct run *r;
if(((u64)pa % PGSIZE) != 0 || (char*)pa < end || (u64)pa >= PHYSTOP)
if(((u64)pa % PGSIZE) != 0 || (char *)pa < end || (u64)pa >= PHYSTOP)
panic("kfree");
// Fill with junk to catch dangling refs.
memset(pa, 1, PGSIZE);
r = (struct run*)pa;
r = (struct run *)pa;
acquire(&kmem.lock);
r->next = kmem.freelist;
@ -77,6 +77,6 @@ kalloc(void)
release(&kmem.lock);
if(r)
memset((char*)r, 5, PGSIZE); // fill with junk
return (void*)r;
memset((char *)r, 5, PGSIZE); // fill with junk
return (void *)r;
}

View file

@ -38,12 +38,12 @@ struct logheader {
};
struct log {
struct spinlock lock;
int start;
int size;
int outstanding; // how many FS sys calls are executing.
int committing; // in commit(), please wait.
int dev;
struct spinlock lock;
int start;
int size;
int outstanding; // how many FS sys calls are executing.
int committing; // in commit(), please wait.
int dev;
struct logheader lh;
};
struct log log;
@ -54,7 +54,7 @@ static void commit();
void
initlog(int dev, struct superblock *sb)
{
if (sizeof(struct logheader) >= BSIZE)
if(sizeof(struct logheader) >= BSIZE)
panic("initlog: too big logheader");
initlock(&log.lock, "log");
@ -70,11 +70,11 @@ install_trans(int recovering)
{
int tail;
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *lbuf = bread(log.dev, log.start+tail+1); // read log block
struct buf *dbuf = bread(log.dev, log.lh.block[tail]); // read dst
memmove(dbuf->data, lbuf->data, BSIZE); // copy block to dst
bwrite(dbuf); // write dst to disk
for(tail = 0; tail < log.lh.n; tail++) {
struct buf *lbuf = bread(log.dev, log.start + tail + 1); // read log block
struct buf *dbuf = bread(log.dev, log.lh.block[tail]); // read dst
memmove(dbuf->data, lbuf->data, BSIZE); // copy block to dst
bwrite(dbuf); // write dst to disk
if(recovering == 0)
bunpin(dbuf);
brelse(lbuf);
@ -86,11 +86,11 @@ install_trans(int recovering)
static void
read_head(void)
{
struct buf *buf = bread(log.dev, log.start);
struct logheader *lh = (struct logheader *) (buf->data);
int i;
struct buf *buf = bread(log.dev, log.start);
struct logheader *lh = (struct logheader *)(buf->data);
int i;
log.lh.n = lh->n;
for (i = 0; i < log.lh.n; i++) {
for(i = 0; i < log.lh.n; i++) {
log.lh.block[i] = lh->block[i];
}
brelse(buf);
@ -102,11 +102,11 @@ read_head(void)
static void
write_head(void)
{
struct buf *buf = bread(log.dev, log.start);
struct logheader *hb = (struct logheader *) (buf->data);
int i;
struct buf *buf = bread(log.dev, log.start);
struct logheader *hb = (struct logheader *)(buf->data);
int i;
hb->n = log.lh.n;
for (i = 0; i < log.lh.n; i++) {
for(i = 0; i < log.lh.n; i++) {
hb->block[i] = log.lh.block[i];
}
bwrite(buf);
@ -127,10 +127,10 @@ void
begin_op(void)
{
acquire(&log.lock);
while(1){
if(log.committing){
while(1) {
if(log.committing) {
sleep(&log, &log.lock);
} else if(log.lh.n + (log.outstanding+1)*MAXOPBLOCKS > LOGSIZE){
} else if(log.lh.n + (log.outstanding + 1) * MAXOPBLOCKS > LOGSIZE) {
// this op might exhaust log space; wait for commit.
sleep(&log, &log.lock);
} else {
@ -152,7 +152,7 @@ end_op(void)
log.outstanding -= 1;
if(log.committing)
panic("log.committing");
if(log.outstanding == 0){
if(log.outstanding == 0) {
do_commit = 1;
log.committing = 1;
} else {
@ -163,7 +163,7 @@ end_op(void)
}
release(&log.lock);
if(do_commit){
if(do_commit) {
// call commit w/o holding locks, since not allowed
// to sleep with locks.
commit();
@ -180,11 +180,11 @@ write_log(void)
{
int tail;
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start+tail+1); // log block
for(tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start + tail + 1); // log block
struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block
memmove(to->data, from->data, BSIZE);
bwrite(to); // write the log
bwrite(to); // write the log
brelse(from);
brelse(to);
}
@ -193,12 +193,12 @@ write_log(void)
static void
commit()
{
if (log.lh.n > 0) {
write_log(); // Write modified blocks from cache to log
write_head(); // Write header to disk -- the real commit
if(log.lh.n > 0) {
write_log(); // Write modified blocks from cache to log
write_head(); // Write header to disk -- the real commit
install_trans(0); // Now install writes to home locations
log.lh.n = 0;
write_head(); // Erase the transaction from the log
write_head(); // Erase the transaction from the log
}
}
@ -217,20 +217,19 @@ log_write(struct buf *b)
int i;
acquire(&log.lock);
if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
if(log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
panic("too big a transaction");
if (log.outstanding < 1)
if(log.outstanding < 1)
panic("log_write outside of trans");
for (i = 0; i < log.lh.n; i++) {
if (log.lh.block[i] == b->blockno) // log absorption
for(i = 0; i < log.lh.n; i++) {
if(log.lh.block[i] == b->blockno) // log absorption
break;
}
log.lh.block[i] = b->blockno;
if (i == log.lh.n) { // Add new block to log?
if(i == log.lh.n) { // Add new block to log?
bpin(b);
log.lh.n++;
}
release(&log.lock);
}

View file

@ -10,25 +10,25 @@ volatile static int started = 0;
void
main()
{
if(cpuid() == 0){
if(cpuid() == 0) {
consoleinit();
printfinit();
printf("\n");
printf("xv6 kernel is booting\n");
printf("\n");
kinit(); // physical page allocator
kvminit(); // create kernel page table
kvminithart(); // turn on paging
procinit(); // process table
trapinit(); // trap vectors
trapinithart(); // install kernel trap vector
plicinit(); // set up interrupt controller
plicinithart(); // ask PLIC for device interrupts
binit(); // buffer cache
iinit(); // inode table
fileinit(); // file table
kinit(); // physical page allocator
kvminit(); // create kernel page table
kvminithart(); // turn on paging
procinit(); // process table
trapinit(); // trap vectors
trapinithart(); // install kernel trap vector
plicinit(); // set up interrupt controller
plicinithart(); // ask PLIC for device interrupts
binit(); // buffer cache
iinit(); // inode table
fileinit(); // file table
virtio_disk_init(); // emulated hard disk
userinit(); // first user process
userinit(); // first user process
__sync_synchronize();
started = 1;
} else {
@ -36,10 +36,10 @@ main()
;
__sync_synchronize();
printf("hart %d starting\n", cpuid());
kvminithart(); // turn on paging
trapinithart(); // install kernel trap vector
plicinithart(); // ask PLIC for device interrupts
kvminithart(); // turn on paging
trapinithart(); // install kernel trap vector
plicinithart(); // ask PLIC for device interrupts
}
scheduler();
scheduler();
}

View file

@ -6,8 +6,8 @@
// 00001000 -- boot ROM, provided by qemu
// 02000000 -- CLINT
// 0C000000 -- PLIC
// 10000000 -- uart0
// 10001000 -- virtio disk
// 10000000 -- uart0
// 10001000 -- virtio disk
// 80000000 -- boot ROM jumps here in machine mode
// -kernel loads the kernel here
// unused RAM after 80000000.
@ -18,34 +18,34 @@
// PHYSTOP -- end RAM used by the kernel
// qemu puts UART registers here in physical memory.
#define UART0 0x10000000L
#define UART0 0x10000000L
#define UART0_IRQ 10
// virtio mmio interface
#define VIRTIO0 0x10001000
#define VIRTIO0 0x10001000
#define VIRTIO0_IRQ 1
// core local interruptor (CLINT), which contains the timer.
#define CLINT 0x2000000L
#define CLINT_MTIMECMP(hartid) (CLINT + 0x4000 + 8*(hartid))
#define CLINT_MTIME (CLINT + 0xBFF8) // cycles since boot.
#define CLINT 0x2000000L
#define CLINT_MTIMECMP(hartid) (CLINT + 0x4000 + 8 * (hartid))
#define CLINT_MTIME (CLINT + 0xBFF8) // cycles since boot.
// qemu puts platform-level interrupt controller (PLIC) here.
#define PLIC 0x0c000000L
#define PLIC_PRIORITY (PLIC + 0x0)
#define PLIC_PENDING (PLIC + 0x1000)
#define PLIC_MENABLE(hart) (PLIC + 0x2000 + (hart)*0x100)
#define PLIC_SENABLE(hart) (PLIC + 0x2080 + (hart)*0x100)
#define PLIC_MPRIORITY(hart) (PLIC + 0x200000 + (hart)*0x2000)
#define PLIC_SPRIORITY(hart) (PLIC + 0x201000 + (hart)*0x2000)
#define PLIC_MCLAIM(hart) (PLIC + 0x200004 + (hart)*0x2000)
#define PLIC_SCLAIM(hart) (PLIC + 0x201004 + (hart)*0x2000)
#define PLIC 0x0c000000L
#define PLIC_PRIORITY (PLIC + 0x0)
#define PLIC_PENDING (PLIC + 0x1000)
#define PLIC_MENABLE(hart) (PLIC + 0x2000 + (hart) * 0x100)
#define PLIC_SENABLE(hart) (PLIC + 0x2080 + (hart) * 0x100)
#define PLIC_MPRIORITY(hart) (PLIC + 0x200000 + (hart) * 0x2000)
#define PLIC_SPRIORITY(hart) (PLIC + 0x201000 + (hart) * 0x2000)
#define PLIC_MCLAIM(hart) (PLIC + 0x200004 + (hart) * 0x2000)
#define PLIC_SCLAIM(hart) (PLIC + 0x201004 + (hart) * 0x2000)
// the kernel expects there to be RAM
// for use by the kernel and user pages
// from physical address 0x80000000 to PHYSTOP.
#define KERNBASE 0x80000000L
#define PHYSTOP (KERNBASE + 128*1024*1024)
#define PHYSTOP (KERNBASE + 128 * 1024 * 1024)
// map the trampoline page to the highest address,
// in both user and kernel space.
@ -53,7 +53,7 @@
// map kernel stacks beneath the trampoline,
// each surrounded by invalid guard pages.
#define KSTACK(p) (TRAMPOLINE - ((p)+1)* 2*PGSIZE)
#define KSTACK(p) (TRAMPOLINE - ((p) + 1) * 2 * PGSIZE)
// User memory layout.
// Address zero first:

View file

@ -1,13 +1,13 @@
#define NPROC 64 // maximum number of processes
#define NCPU 8 // maximum number of CPUs
#define NOFILE 16 // open files per process
#define NFILE 100 // open files per system
#define NINODE 50 // maximum number of active i-nodes
#define NDEV 10 // maximum major device number
#define ROOTDEV 1 // device number of file system root disk
#define MAXARG 32 // max exec arguments
#define MAXOPBLOCKS 10 // max # of blocks any FS op writes
#define LOGSIZE (MAXOPBLOCKS*3) // max data blocks in on-disk log
#define NBUF (MAXOPBLOCKS*3) // size of disk block cache
#define FSSIZE 2000 // size of file system in blocks
#define MAXPATH 128 // maximum file path name
#define NPROC 64 // maximum number of processes
#define NCPU 8 // maximum number of CPUs
#define NOFILE 16 // open files per process
#define NFILE 100 // open files per system
#define NINODE 50 // maximum number of active i-nodes
#define NDEV 10 // maximum major device number
#define ROOTDEV 1 // device number of file system root disk
#define MAXARG 32 // max exec arguments
#define MAXOPBLOCKS 10 // max # of blocks any FS op writes
#define LOGSIZE (MAXOPBLOCKS * 3) // max data blocks in on-disk log
#define NBUF (MAXOPBLOCKS * 3) // size of disk block cache
#define FSSIZE 2000 // size of file system in blocks
#define MAXPATH 128 // maximum file path name

View file

@ -12,11 +12,11 @@
struct pipe {
struct spinlock lock;
char data[PIPESIZE];
u32 nread; // number of bytes read
u32 nwrite; // number of bytes written
int readopen; // read fd is still open
int writeopen; // write fd is still open
char data[PIPESIZE];
u32 nread; // number of bytes read
u32 nwrite; // number of bytes written
int readopen; // read fd is still open
int writeopen; // write fd is still open
};
int
@ -28,7 +28,7 @@ pipealloc(struct file **f0, struct file **f1)
*f0 = *f1 = 0;
if((*f0 = filealloc()) == 0 || (*f1 = filealloc()) == 0)
goto bad;
if((pi = (struct pipe*)kalloc()) == 0)
if((pi = (struct pipe *)kalloc()) == 0)
goto bad;
pi->readopen = 1;
pi->writeopen = 1;
@ -45,9 +45,9 @@ pipealloc(struct file **f0, struct file **f1)
(*f1)->pipe = pi;
return 0;
bad:
bad:
if(pi)
kfree((char*)pi);
kfree((char *)pi);
if(*f0)
fileclose(*f0);
if(*f1)
@ -59,16 +59,16 @@ void
pipeclose(struct pipe *pi, int writable)
{
acquire(&pi->lock);
if(writable){
if(writable) {
pi->writeopen = 0;
wakeup(&pi->nread);
} else {
pi->readopen = 0;
wakeup(&pi->nwrite);
}
if(pi->readopen == 0 && pi->writeopen == 0){
if(pi->readopen == 0 && pi->writeopen == 0) {
release(&pi->lock);
kfree((char*)pi);
kfree((char *)pi);
} else
release(&pi->lock);
}
@ -76,16 +76,16 @@ pipeclose(struct pipe *pi, int writable)
int
pipewrite(struct pipe *pi, u64 addr, int n)
{
int i = 0;
int i = 0;
struct proc *pr = myproc();
acquire(&pi->lock);
while(i < n){
if(pi->readopen == 0 || killed(pr)){
while(i < n) {
if(pi->readopen == 0 || killed(pr)) {
release(&pi->lock);
return -1;
}
if(pi->nwrite == pi->nread + PIPESIZE){ //DOC: pipewrite-full
if(pi->nwrite == pi->nread + PIPESIZE) { // DOC: pipewrite-full
wakeup(&pi->nread);
sleep(&pi->nwrite, &pi->lock);
} else {
@ -105,26 +105,26 @@ pipewrite(struct pipe *pi, u64 addr, int n)
int
piperead(struct pipe *pi, u64 addr, int n)
{
int i;
int i;
struct proc *pr = myproc();
char ch;
char ch;
acquire(&pi->lock);
while(pi->nread == pi->nwrite && pi->writeopen){ //DOC: pipe-empty
if(killed(pr)){
while(pi->nread == pi->nwrite && pi->writeopen) { // DOC: pipe-empty
if(killed(pr)) {
release(&pi->lock);
return -1;
}
sleep(&pi->nread, &pi->lock); //DOC: piperead-sleep
sleep(&pi->nread, &pi->lock); // DOC: piperead-sleep
}
for(i = 0; i < n; i++){ //DOC: piperead-copy
for(i = 0; i < n; i++) { // DOC: piperead-copy
if(pi->nread == pi->nwrite)
break;
ch = pi->data[pi->nread++ % PIPESIZE];
if(copyout(pr->pagetable, addr + i, &ch, 1) == -1)
break;
}
wakeup(&pi->nwrite); //DOC: piperead-wakeup
wakeup(&pi->nwrite); // DOC: piperead-wakeup
release(&pi->lock);
return i;
}

View file

@ -12,21 +12,21 @@ void
plicinit(void)
{
// set desired IRQ priorities non-zero (otherwise disabled).
*(u32*)(PLIC + UART0_IRQ*4) = 1;
*(u32*)(PLIC + VIRTIO0_IRQ*4) = 1;
*(u32 *)(PLIC + UART0_IRQ * 4) = 1;
*(u32 *)(PLIC + VIRTIO0_IRQ * 4) = 1;
}
void
plicinithart(void)
{
int hart = cpuid();
// set enable bits for this hart's S-mode
// for the uart and virtio disk.
*(u32*)PLIC_SENABLE(hart) = (1 << UART0_IRQ) | (1 << VIRTIO0_IRQ);
*(u32 *)PLIC_SENABLE(hart) = (1 << UART0_IRQ) | (1 << VIRTIO0_IRQ);
// set this hart's S-mode priority threshold to 0.
*(u32*)PLIC_SPRIORITY(hart) = 0;
*(u32 *)PLIC_SPRIORITY(hart) = 0;
}
// ask the PLIC what interrupt we should serve.
@ -34,7 +34,7 @@ int
plic_claim(void)
{
int hart = cpuid();
int irq = *(u32*)PLIC_SCLAIM(hart);
int irq = *(u32 *)PLIC_SCLAIM(hart);
return irq;
}
@ -43,5 +43,5 @@ void
plic_complete(int irq)
{
int hart = cpuid();
*(u32*)PLIC_SCLAIM(hart) = irq;
*(u32 *)PLIC_SCLAIM(hart) = irq;
}

View file

@ -20,7 +20,7 @@ volatile int panicked = 0;
// lock to avoid interleaving concurrent printf's.
static struct {
struct spinlock lock;
int locking;
int locking;
} pr;
static char digits[] = "0123456789abcdef";
@ -29,8 +29,8 @@ static void
printint(int xx, int base, int sign)
{
char buf[16];
int i;
u32 x;
int i;
u32 x;
if(sign && (sign = xx < 0))
x = -xx;
@ -55,7 +55,7 @@ printptr(u64 x)
int i;
consputc('0');
consputc('x');
for (i = 0; i < (sizeof(u64) * 2); i++, x <<= 4)
for(i = 0; i < (sizeof(u64) * 2); i++, x <<= 4)
consputc(digits[x >> (sizeof(u64) * 8 - 4)]);
}
@ -64,26 +64,26 @@ void
printf(char *fmt, ...)
{
va_list ap;
int i, c, locking;
char *s;
int i, c, locking;
char *s;
locking = pr.locking;
if(locking)
acquire(&pr.lock);
if (fmt == 0)
if(fmt == 0)
panic("null fmt");
va_start(ap, fmt);
for(i = 0; (c = fmt[i] & 0xff) != 0; i++){
if(c != '%'){
for(i = 0; (c = fmt[i] & 0xff) != 0; i++) {
if(c != '%') {
consputc(c);
continue;
}
c = fmt[++i] & 0xff;
if(c == 0)
break;
switch(c){
switch(c) {
case 'd':
printint(va_arg(ap, int), 10, 1);
break;
@ -94,7 +94,7 @@ printf(char *fmt, ...)
printptr(va_arg(ap, u64));
break;
case 's':
if((s = va_arg(ap, char*)) == 0)
if((s = va_arg(ap, char *)) == 0)
s = "(null)";
for(; *s; s++)
consputc(*s);

View file

@ -12,7 +12,7 @@ struct proc proc[NPROC];
struct proc *initproc;
int nextpid = 1;
int nextpid = 1;
struct spinlock pid_lock;
extern void forkret(void);
@ -33,12 +33,12 @@ void
proc_mapstacks(pagetable_t kpgtbl)
{
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++) {
char *pa = kalloc();
if(pa == 0)
panic("kalloc");
u64 va = KSTACK((int) (p - proc));
u64 va = KSTACK((int)(p - proc));
kvmmap(kpgtbl, va, (u64)pa, PGSIZE, PTE_R | PTE_W);
}
}
@ -48,13 +48,13 @@ void
procinit(void)
{
struct proc *p;
initlock(&pid_lock, "nextpid");
initlock(&wait_lock, "wait_lock");
for(p = proc; p < &proc[NPROC]; p++) {
initlock(&p->lock, "proc");
p->state = UNUSED;
p->kstack = KSTACK((int) (p - proc));
initlock(&p->lock, "proc");
p->state = UNUSED;
p->kstack = KSTACK((int)(p - proc));
}
}
@ -70,20 +70,20 @@ cpuid()
// Return this CPU's cpu struct.
// Interrupts must be disabled.
struct cpu*
struct cpu *
mycpu(void)
{
int id = cpuid();
int id = cpuid();
struct cpu *c = &cpus[id];
return c;
}
// Return the current struct proc *, or zero if none.
struct proc*
struct proc *
myproc(void)
{
push_off();
struct cpu *c = mycpu();
struct cpu *c = mycpu();
struct proc *p = c->proc;
pop_off();
return p;
@ -93,7 +93,7 @@ int
allocpid()
{
int pid;
acquire(&pid_lock);
pid = nextpid;
nextpid = nextpid + 1;
@ -106,7 +106,7 @@ allocpid()
// If found, initialize state required to run in the kernel,
// and return with p->lock held.
// If there are no free procs, or a memory allocation fails, return 0.
static struct proc*
static struct proc *
allocproc(void)
{
struct proc *p;
@ -126,7 +126,7 @@ found:
p->state = USED;
// Allocate a trapframe page.
if((p->trapframe = (struct trapframe *)kalloc()) == 0){
if((p->trapframe = (struct trapframe *)kalloc()) == 0) {
freeproc(p);
release(&p->lock);
return 0;
@ -134,7 +134,7 @@ found:
// An empty user page table.
p->pagetable = proc_pagetable(p);
if(p->pagetable == 0){
if(p->pagetable == 0) {
freeproc(p);
release(&p->lock);
return 0;
@ -156,7 +156,7 @@ static void
freeproc(struct proc *p)
{
if(p->trapframe)
kfree((void*)p->trapframe);
kfree((void *)p->trapframe);
p->trapframe = 0;
if(p->pagetable)
proc_freepagetable(p->pagetable, p->sz);
@ -187,16 +187,14 @@ proc_pagetable(struct proc *p)
// at the highest user virtual address.
// only the supervisor uses it, on the way
// to/from user space, so not PTE_U.
if(mappages(pagetable, TRAMPOLINE, PGSIZE,
(u64)trampoline, PTE_R | PTE_X) < 0){
if(mappages(pagetable, TRAMPOLINE, PGSIZE, (u64)trampoline, PTE_R | PTE_X) < 0) {
uvmfree(pagetable, 0);
return 0;
}
// map the trapframe page just below the trampoline page, for
// trampoline.S.
if(mappages(pagetable, TRAPFRAME, PGSIZE,
(u64)(p->trapframe), PTE_R | PTE_W) < 0){
if(mappages(pagetable, TRAPFRAME, PGSIZE, (u64)(p->trapframe), PTE_R | PTE_W) < 0) {
uvmunmap(pagetable, TRAMPOLINE, 1, 0);
uvmfree(pagetable, 0);
return 0;
@ -218,15 +216,10 @@ proc_freepagetable(pagetable_t pagetable, u64 sz)
// a user program that calls exec("/init")
// assembled from ../user/initcode.S
// od -t xC ../user/initcode
u8 initcode[] = {
0x17, 0x05, 0x00, 0x00, 0x13, 0x05, 0x45, 0x02,
0x97, 0x05, 0x00, 0x00, 0x93, 0x85, 0x35, 0x02,
0x93, 0x08, 0x70, 0x00, 0x73, 0x00, 0x00, 0x00,
0x93, 0x08, 0x20, 0x00, 0x73, 0x00, 0x00, 0x00,
0xef, 0xf0, 0x9f, 0xff, 0x2f, 0x69, 0x6e, 0x69,
0x74, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
u8 initcode[]
= { 0x17, 0x05, 0x00, 0x00, 0x13, 0x05, 0x45, 0x02, 0x97, 0x05, 0x00, 0x00, 0x93, 0x85, 0x35, 0x02, 0x93, 0x08,
0x70, 0x00, 0x73, 0x00, 0x00, 0x00, 0x93, 0x08, 0x20, 0x00, 0x73, 0x00, 0x00, 0x00, 0xef, 0xf0, 0x9f, 0xff,
0x2f, 0x69, 0x6e, 0x69, 0x74, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// Set up first user process.
void
@ -236,15 +229,15 @@ userinit(void)
p = allocproc();
initproc = p;
// allocate one user page and copy initcode's instructions
// and data into it.
uvmfirst(p->pagetable, initcode, sizeof(initcode));
p->sz = PGSIZE;
// prepare for the very first "return" from kernel to user.
p->trapframe->epc = 0; // user program counter
p->trapframe->sp = PGSIZE; // user stack pointer
p->trapframe->epc = 0; // user program counter
p->trapframe->sp = PGSIZE; // user stack pointer
safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/");
@ -259,15 +252,15 @@ userinit(void)
int
growproc(int n)
{
u64 sz;
u64 sz;
struct proc *p = myproc();
sz = p->sz;
if(n > 0){
if(n > 0) {
if((sz = uvmalloc(p->pagetable, sz, sz + n, PTE_W)) == 0) {
return -1;
}
} else if(n < 0){
} else if(n < 0) {
sz = uvmdealloc(p->pagetable, sz, sz + n);
}
p->sz = sz;
@ -279,17 +272,17 @@ growproc(int n)
int
fork(void)
{
int i, pid;
int i, pid;
struct proc *np;
struct proc *p = myproc();
// Allocate process.
if((np = allocproc()) == 0){
if((np = allocproc()) == 0) {
return -1;
}
// Copy user memory from parent to child.
if(uvmcopy(p->pagetable, np->pagetable, p->sz) < 0){
if(uvmcopy(p->pagetable, np->pagetable, p->sz) < 0) {
freeproc(np);
release(&np->lock);
return -1;
@ -332,8 +325,8 @@ reparent(struct proc *p)
{
struct proc *pp;
for(pp = proc; pp < &proc[NPROC]; pp++){
if(pp->parent == p){
for(pp = proc; pp < &proc[NPROC]; pp++) {
if(pp->parent == p) {
pp->parent = initproc;
wakeup(initproc);
}
@ -352,8 +345,8 @@ exit(int status)
panic("init exiting");
// Close all open files.
for(int fd = 0; fd < NOFILE; fd++){
if(p->ofile[fd]){
for(int fd = 0; fd < NOFILE; fd++) {
if(p->ofile[fd]) {
struct file *f = p->ofile[fd];
fileclose(f);
p->ofile[fd] = 0;
@ -372,7 +365,7 @@ exit(int status)
// Parent might be sleeping in wait().
wakeup(p->parent);
acquire(&p->lock);
p->xstate = status;
@ -391,25 +384,24 @@ int
wait(u64 addr)
{
struct proc *pp;
int havekids, pid;
int havekids, pid;
struct proc *p = myproc();
acquire(&wait_lock);
for(;;){
for(;;) {
// Scan through table looking for exited children.
havekids = 0;
for(pp = proc; pp < &proc[NPROC]; pp++){
if(pp->parent == p){
for(pp = proc; pp < &proc[NPROC]; pp++) {
if(pp->parent == p) {
// make sure the child isn't still in exit() or swtch().
acquire(&pp->lock);
havekids = 1;
if(pp->state == ZOMBIE){
if(pp->state == ZOMBIE) {
// Found one.
pid = pp->pid;
if(addr != 0 && copyout(p->pagetable, addr, (char *)&pp->xstate,
sizeof(pp->xstate)) < 0) {
if(addr != 0 && copyout(p->pagetable, addr, (char *)&pp->xstate, sizeof(pp->xstate)) < 0) {
release(&pp->lock);
release(&wait_lock);
return -1;
@ -424,13 +416,13 @@ wait(u64 addr)
}
// No point waiting if we don't have any children.
if(!havekids || killed(p)){
if(!havekids || killed(p)) {
release(&wait_lock);
return -1;
}
// Wait for a child to exit.
sleep(p, &wait_lock); //DOC: wait-sleep
sleep(p, &wait_lock); // DOC: wait-sleep
}
}
@ -445,10 +437,10 @@ void
scheduler(void)
{
struct proc *p;
struct cpu *c = mycpu();
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
for(;;) {
// Avoid deadlock by ensuring that devices can interrupt.
intr_on();
@ -481,7 +473,7 @@ scheduler(void)
void
sched(void)
{
int intena;
int intena;
struct proc *p = myproc();
if(!holding(&p->lock))
@ -519,7 +511,7 @@ forkret(void)
// Still holding p->lock from scheduler.
release(&myproc()->lock);
if (first) {
if(first) {
// File system initialization must be run in the context of a
// regular process (e.g., because it calls sleep), and thus cannot
// be run from main().
@ -536,7 +528,7 @@ void
sleep(void *chan, struct spinlock *lk)
{
struct proc *p = myproc();
// Must acquire p->lock in order to
// change p->state and then call sched.
// Once we hold p->lock, we can be
@ -544,7 +536,7 @@ sleep(void *chan, struct spinlock *lk)
// (wakeup locks p->lock),
// so it's okay to release lk.
acquire(&p->lock); //DOC: sleeplock1
acquire(&p->lock); // DOC: sleeplock1
release(lk);
// Go to sleep.
@ -569,7 +561,7 @@ wakeup(void *chan)
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++) {
if(p != myproc()){
if(p != myproc()) {
acquire(&p->lock);
if(p->state == SLEEPING && p->chan == chan) {
p->state = RUNNABLE;
@ -587,11 +579,11 @@ kill(int pid)
{
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++){
for(p = proc; p < &proc[NPROC]; p++) {
acquire(&p->lock);
if(p->pid == pid){
if(p->pid == pid) {
p->killed = 1;
if(p->state == SLEEPING){
if(p->state == SLEEPING) {
// Wake process from sleep().
p->state = RUNNABLE;
}
@ -615,7 +607,7 @@ int
killed(struct proc *p)
{
int k;
acquire(&p->lock);
k = p->killed;
release(&p->lock);
@ -629,7 +621,7 @@ int
either_copyout(int user_dst, u64 dst, void *src, u64 len)
{
struct proc *p = myproc();
if(user_dst){
if(user_dst) {
return copyout(p->pagetable, dst, src, len);
} else {
memmove((char *)dst, src, len);
@ -644,10 +636,10 @@ int
either_copyin(void *dst, int user_src, u64 src, u64 len)
{
struct proc *p = myproc();
if(user_src){
if(user_src) {
return copyin(p->pagetable, dst, src, len);
} else {
memmove(dst, (char*)src, len);
memmove(dst, (char *)src, len);
return 0;
}
}
@ -659,18 +651,13 @@ void
procdump(void)
{
static char *states[] = {
[UNUSED] "unused",
[USED] "used",
[SLEEPING] "sleep ",
[RUNNABLE] "runble",
[RUNNING] "run ",
[ZOMBIE] "zombie"
[UNUSED] "unused", [USED] "used", [SLEEPING] "sleep ", [RUNNABLE] "runble", [RUNNING] "run ", [ZOMBIE] "zombie"
};
struct proc *p;
char *state;
char *state;
printf("\n");
for(p = proc; p < &proc[NPROC]; p++){
for(p = proc; p < &proc[NPROC]; p++) {
if(p->state == UNUSED)
continue;
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])

View file

@ -20,10 +20,10 @@ struct context {
// Per-CPU state.
struct cpu {
struct proc *proc; // The process running on this cpu, or null.
struct context context; // swtch() here to enter scheduler().
int noff; // Depth of push_off() nesting.
int intena; // Were interrupts enabled before push_off()?
struct proc *proc; // The process running on this cpu, or null.
struct context context; // swtch() here to enter scheduler().
int noff; // Depth of push_off() nesting.
int intena; // Were interrupts enabled before push_off()?
};
extern struct cpu cpus[NCPU];
@ -86,22 +86,22 @@ struct proc {
struct spinlock lock;
// p->lock must be held when using these:
enum procstate state; // Process state
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
int xstate; // Exit status to be returned to parent's wait
int pid; // Process ID
enum procstate state; // Process state
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
int xstate; // Exit status to be returned to parent's wait
int pid; // Process ID
// wait_lock must be held when using this:
struct proc *parent; // Parent process
struct proc *parent; // Parent process
// these are private to the process, so p->lock need not be held.
u64 kstack; // Virtual address of kernel stack
u64 sz; // Size of process memory (bytes)
pagetable_t pagetable; // User page table
struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)
u64 kstack; // Virtual address of kernel stack
u64 sz; // Size of process memory (bytes)
pagetable_t pagetable; // User page table
struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)
};

View file

@ -24,16 +24,16 @@ ramdiskrw(struct buf *b)
{
if(!holdingsleep(&b->lock))
panic("ramdiskrw: buf not locked");
if((b->flags & (B_VALID|B_DIRTY)) == B_VALID)
if((b->flags & (B_VALID | B_DIRTY)) == B_VALID)
panic("ramdiskrw: nothing to do");
if(b->blockno >= FSSIZE)
panic("ramdiskrw: blockno too big");
u64 diskaddr = b->blockno * BSIZE;
u64 diskaddr = b->blockno * BSIZE;
char *addr = (char *)RAMDISK + diskaddr;
if(b->flags & B_DIRTY){
if(b->flags & B_DIRTY) {
// write
memmove(addr, b->data, BSIZE);
b->flags &= ~B_DIRTY;

View file

@ -5,61 +5,61 @@ static inline u64
r_mhartid()
{
u64 x;
asm volatile("csrr %0, mhartid" : "=r" (x) );
asm volatile("csrr %0, mhartid" : "=r"(x));
return x;
}
// Machine Status Register, mstatus
#define MSTATUS_MPP_MASK (3L << 11) // previous mode.
#define MSTATUS_MPP_M (3L << 11)
#define MSTATUS_MPP_S (1L << 11)
#define MSTATUS_MPP_U (0L << 11)
#define MSTATUS_MIE (1L << 3) // machine-mode interrupt enable.
#define MSTATUS_MPP_M (3L << 11)
#define MSTATUS_MPP_S (1L << 11)
#define MSTATUS_MPP_U (0L << 11)
#define MSTATUS_MIE (1L << 3) // machine-mode interrupt enable.
static inline u64
r_mstatus()
{
u64 x;
asm volatile("csrr %0, mstatus" : "=r" (x) );
asm volatile("csrr %0, mstatus" : "=r"(x));
return x;
}
static inline void
static inline void
w_mstatus(u64 x)
{
asm volatile("csrw mstatus, %0" : : "r" (x));
asm volatile("csrw mstatus, %0" : : "r"(x));
}
// machine exception program counter, holds the
// instruction address to which a return from
// exception will go.
static inline void
static inline void
w_mepc(u64 x)
{
asm volatile("csrw mepc, %0" : : "r" (x));
asm volatile("csrw mepc, %0" : : "r"(x));
}
// Supervisor Status Register, sstatus
#define SSTATUS_SPP (1L << 8) // Previous mode, 1=Supervisor, 0=User
#define SSTATUS_SPP (1L << 8) // Previous mode, 1=Supervisor, 0=User
#define SSTATUS_SPIE (1L << 5) // Supervisor Previous Interrupt Enable
#define SSTATUS_UPIE (1L << 4) // User Previous Interrupt Enable
#define SSTATUS_SIE (1L << 1) // Supervisor Interrupt Enable
#define SSTATUS_UIE (1L << 0) // User Interrupt Enable
#define SSTATUS_SIE (1L << 1) // Supervisor Interrupt Enable
#define SSTATUS_UIE (1L << 0) // User Interrupt Enable
static inline u64
r_sstatus()
{
u64 x;
asm volatile("csrr %0, sstatus" : "=r" (x) );
asm volatile("csrr %0, sstatus" : "=r"(x));
return x;
}
static inline void
static inline void
w_sstatus(u64 x)
{
asm volatile("csrw sstatus, %0" : : "r" (x));
asm volatile("csrw sstatus, %0" : : "r"(x));
}
// Supervisor Interrupt Pending
@ -67,14 +67,14 @@ static inline u64
r_sip()
{
u64 x;
asm volatile("csrr %0, sip" : "=r" (x) );
asm volatile("csrr %0, sip" : "=r"(x));
return x;
}
static inline void
static inline void
w_sip(u64 x)
{
asm volatile("csrw sip, %0" : : "r" (x));
asm volatile("csrw sip, %0" : : "r"(x));
}
// Supervisor Interrupt Enable
@ -85,14 +85,14 @@ static inline u64
r_sie()
{
u64 x;
asm volatile("csrr %0, sie" : "=r" (x) );
asm volatile("csrr %0, sie" : "=r"(x));
return x;
}
static inline void
static inline void
w_sie(u64 x)
{
asm volatile("csrw sie, %0" : : "r" (x));
asm volatile("csrw sie, %0" : : "r"(x));
}
// Machine-mode Interrupt Enable
@ -103,30 +103,30 @@ static inline u64
r_mie()
{
u64 x;
asm volatile("csrr %0, mie" : "=r" (x) );
asm volatile("csrr %0, mie" : "=r"(x));
return x;
}
static inline void
static inline void
w_mie(u64 x)
{
asm volatile("csrw mie, %0" : : "r" (x));
asm volatile("csrw mie, %0" : : "r"(x));
}
// supervisor exception program counter, holds the
// instruction address to which a return from
// exception will go.
static inline void
static inline void
w_sepc(u64 x)
{
asm volatile("csrw sepc, %0" : : "r" (x));
asm volatile("csrw sepc, %0" : : "r"(x));
}
static inline u64
r_sepc()
{
u64 x;
asm volatile("csrr %0, sepc" : "=r" (x) );
asm volatile("csrr %0, sepc" : "=r"(x));
return x;
}
@ -135,14 +135,14 @@ static inline u64
r_medeleg()
{
u64 x;
asm volatile("csrr %0, medeleg" : "=r" (x) );
asm volatile("csrr %0, medeleg" : "=r"(x));
return x;
}
static inline void
static inline void
w_medeleg(u64 x)
{
asm volatile("csrw medeleg, %0" : : "r" (x));
asm volatile("csrw medeleg, %0" : : "r"(x));
}
// Machine Interrupt Delegation
@ -150,50 +150,50 @@ static inline u64
r_mideleg()
{
u64 x;
asm volatile("csrr %0, mideleg" : "=r" (x) );
asm volatile("csrr %0, mideleg" : "=r"(x));
return x;
}
static inline void
static inline void
w_mideleg(u64 x)
{
asm volatile("csrw mideleg, %0" : : "r" (x));
asm volatile("csrw mideleg, %0" : : "r"(x));
}
// Supervisor Trap-Vector Base Address
// low two bits are mode.
static inline void
static inline void
w_stvec(u64 x)
{
asm volatile("csrw stvec, %0" : : "r" (x));
asm volatile("csrw stvec, %0" : : "r"(x));
}
static inline u64
r_stvec()
{
u64 x;
asm volatile("csrr %0, stvec" : "=r" (x) );
asm volatile("csrr %0, stvec" : "=r"(x));
return x;
}
// Machine-mode interrupt vector
static inline void
static inline void
w_mtvec(u64 x)
{
asm volatile("csrw mtvec, %0" : : "r" (x));
asm volatile("csrw mtvec, %0" : : "r"(x));
}
// Physical Memory Protection
static inline void
w_pmpcfg0(u64 x)
{
asm volatile("csrw pmpcfg0, %0" : : "r" (x));
asm volatile("csrw pmpcfg0, %0" : : "r"(x));
}
static inline void
w_pmpaddr0(u64 x)
{
asm volatile("csrw pmpaddr0, %0" : : "r" (x));
asm volatile("csrw pmpaddr0, %0" : : "r"(x));
}
// use riscv's sv39 page table scheme.
@ -203,24 +203,24 @@ w_pmpaddr0(u64 x)
// supervisor address translation and protection;
// holds the address of the page table.
static inline void
static inline void
w_satp(u64 x)
{
asm volatile("csrw satp, %0" : : "r" (x));
asm volatile("csrw satp, %0" : : "r"(x));
}
static inline u64
r_satp()
{
u64 x;
asm volatile("csrr %0, satp" : "=r" (x) );
asm volatile("csrr %0, satp" : "=r"(x));
return x;
}
static inline void
static inline void
w_mscratch(u64 x)
{
asm volatile("csrw mscratch, %0" : : "r" (x));
asm volatile("csrw mscratch, %0" : : "r"(x));
}
// Supervisor Trap Cause
@ -228,7 +228,7 @@ static inline u64
r_scause()
{
u64 x;
asm volatile("csrr %0, scause" : "=r" (x) );
asm volatile("csrr %0, scause" : "=r"(x));
return x;
}
@ -237,22 +237,22 @@ static inline u64
r_stval()
{
u64 x;
asm volatile("csrr %0, stval" : "=r" (x) );
asm volatile("csrr %0, stval" : "=r"(x));
return x;
}
// Machine-mode Counter-Enable
static inline void
static inline void
w_mcounteren(u64 x)
{
asm volatile("csrw mcounteren, %0" : : "r" (x));
asm volatile("csrw mcounteren, %0" : : "r"(x));
}
static inline u64
r_mcounteren()
{
u64 x;
asm volatile("csrr %0, mcounteren" : "=r" (x) );
asm volatile("csrr %0, mcounteren" : "=r"(x));
return x;
}
@ -261,7 +261,7 @@ static inline u64
r_time()
{
u64 x;
asm volatile("csrr %0, time" : "=r" (x) );
asm volatile("csrr %0, time" : "=r"(x));
return x;
}
@ -291,7 +291,7 @@ static inline u64
r_sp()
{
u64 x;
asm volatile("mv %0, sp" : "=r" (x) );
asm volatile("mv %0, sp" : "=r"(x));
return x;
}
@ -301,21 +301,21 @@ static inline u64
r_tp()
{
u64 x;
asm volatile("mv %0, tp" : "=r" (x) );
asm volatile("mv %0, tp" : "=r"(x));
return x;
}
static inline void
static inline void
w_tp(u64 x)
{
asm volatile("mv tp, %0" : : "r" (x));
asm volatile("mv tp, %0" : : "r"(x));
}
static inline u64
r_ra()
{
u64 x;
asm volatile("mv %0, ra" : "=r" (x) );
asm volatile("mv %0, ra" : "=r"(x));
return x;
}
@ -327,16 +327,16 @@ sfence_vma()
asm volatile("sfence.vma zero, zero");
}
typedef u64 pte_t;
typedef u64 pte_t;
typedef u64 *pagetable_t; // 512 PTEs
#endif // __ASSEMBLER__
#define PGSIZE 4096 // bytes per page
#define PGSHIFT 12 // bits of offset within a page
#define PGSIZE 4096 // bytes per page
#define PGSHIFT 12 // bits of offset within a page
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))
#define PGROUNDUP(sz) (((sz) + PGSIZE - 1) & ~(PGSIZE - 1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE - 1))
#define PTE_V (1L << 0) // valid
#define PTE_R (1L << 1)
@ -352,9 +352,9 @@ typedef u64 *pagetable_t; // 512 PTEs
#define PTE_FLAGS(pte) ((pte) & 0x3FF)
// extract the three 9-bit page table indices from a virtual address.
#define PXMASK 0x1FF // 9 bits
#define PXSHIFT(level) (PGSHIFT+(9*(level)))
#define PX(level, va) ((((u64) (va)) >> PXSHIFT(level)) & PXMASK)
#define PXMASK 0x1FF // 9 bits
#define PXSHIFT(level) (PGSHIFT + (9 * (level)))
#define PX(level, va) ((((u64)(va)) >> PXSHIFT(level)) & PXMASK)
// one beyond the highest possible virtual address.
// MAXVA is actually one bit less than the max allowed by

View file

@ -22,7 +22,7 @@ void
acquiresleep(struct sleeplock *lk)
{
acquire(&lk->lk);
while (lk->locked) {
while(lk->locked) {
sleep(lk, &lk->lk);
}
lk->locked = 1;
@ -44,12 +44,9 @@ int
holdingsleep(struct sleeplock *lk)
{
int r;
acquire(&lk->lk);
r = lk->locked && (lk->pid == myproc()->pid);
release(&lk->lk);
return r;
}

View file

@ -1,10 +1,9 @@
// Long-term locks for processes
struct sleeplock {
u32 locked; // Is the lock held?
struct spinlock lk; // spinlock protecting this sleep lock
// For debugging:
char *name; // Name of lock.
int pid; // Process holding lock
};
u32 locked; // Is the lock held?
struct spinlock lk; // spinlock protecting this sleep lock
// For debugging:
char *name; // Name of lock.
int pid; // Process holding lock
};

View file

@ -1,9 +1,8 @@
// Mutual exclusion lock.
struct spinlock {
u32 locked; // Is the lock held?
u32 locked; // Is the lock held?
// For debugging:
char *name; // Name of lock.
struct cpu *cpu; // The cpu holding the lock.
char *name; // Name of lock.
struct cpu *cpu; // The cpu holding the lock.
};

View file

@ -8,7 +8,7 @@ void main();
void timerinit();
// entry.S needs one stack per CPU.
__attribute__ ((aligned (16))) char stack0[4096 * NCPU];
__attribute__((aligned(16))) char stack0[4096 * NCPU];
// a scratch area per CPU for machine-mode timer interrupts.
u64 timer_scratch[NCPU][5];
@ -67,7 +67,7 @@ timerinit()
// ask the CLINT for a timer interrupt.
int interval = 1000000; // cycles; about 1/10th second in qemu.
*(u64*)CLINT_MTIMECMP(id) = *(u64*)CLINT_MTIME + interval;
*(u64 *)CLINT_MTIMECMP(id) = *(u64 *)CLINT_MTIME + interval;
// prepare information in scratch[] for timervec.
// scratch[0..2] : space for timervec to save registers.

View file

@ -1,11 +1,11 @@
#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEVICE 3 // Device
#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEVICE 3 // Device
struct stat {
int dev; // File system's disk device
u32 ino; // Inode number
int dev; // File system's disk device
u32 ino; // Inode number
short type; // Type of file
short nlink; // Number of links to file
u64 size; // Size of file in bytes
u64 size; // Size of file in bytes
};

View file

@ -1,11 +1,11 @@
#include "types.h"
void*
void *
memset(void *dst, int c, u32 n)
{
char *cdst = (char *) dst;
int i;
for(i = 0; i < n; i++){
char *cdst = (char *)dst;
int i;
for(i = 0; i < n; i++) {
cdst[i] = c;
}
return dst;
@ -18,7 +18,7 @@ memcmp(const void *v1, const void *v2, u32 n)
s1 = v1;
s2 = v2;
while(n-- > 0){
while(n-- > 0) {
if(*s1 != *s2)
return *s1 - *s2;
s1++, s2++;
@ -27,18 +27,18 @@ memcmp(const void *v1, const void *v2, u32 n)
return 0;
}
void*
void *
memmove(void *dst, const void *src, u32 n)
{
const char *s;
char *d;
char *d;
if(n == 0)
return dst;
s = src;
d = dst;
if(s < d && s + n > d){
if(s < d && s + n > d) {
s += n;
d += n;
while(n-- > 0)
@ -51,7 +51,7 @@ memmove(void *dst, const void *src, u32 n)
}
// memcpy exists to placate GCC. Use memmove.
void*
void *
memcpy(void *dst, const void *src, u32 n)
{
return memmove(dst, src, n);
@ -67,7 +67,7 @@ strncmp(const char *p, const char *q, u32 n)
return (u8)*p - (u8)*q;
}
char*
char *
strncpy(char *s, const char *t, int n)
{
char *os;
@ -81,7 +81,7 @@ strncpy(char *s, const char *t, int n)
}
// Like strncpy but guaranteed to NUL-terminate.
char*
char *
safestrcpy(char *s, const char *t, int n)
{
char *os;
@ -104,4 +104,3 @@ strlen(const char *s)
;
return n;
}

View file

@ -12,7 +12,7 @@ int
fetchaddr(u64 addr, u64 *ip)
{
struct proc *p = myproc();
if(addr >= p->sz || addr+sizeof(u64) > p->sz) // both tests needed, in case of overflow
if(addr >= p->sz || addr + sizeof(u64) > p->sz) // both tests needed, in case of overflow
return -1;
if(copyin(p->pagetable, (char *)ip, addr, sizeof(*ip)) != 0)
return -1;
@ -34,7 +34,7 @@ static u64
argraw(int n)
{
struct proc *p = myproc();
switch (n) {
switch(n) {
case 0:
return p->trapframe->a0;
case 1:
@ -105,33 +105,18 @@ extern u64 sys_close(void);
// An array mapping syscall numbers from syscall.h
// to the function that handles the system call.
static u64 (*syscalls[])(void) = {
[SYS_fork] sys_fork,
[SYS_exit] sys_exit,
[SYS_wait] sys_wait,
[SYS_pipe] sys_pipe,
[SYS_read] sys_read,
[SYS_kill] sys_kill,
[SYS_exec] sys_exec,
[SYS_fstat] sys_fstat,
[SYS_chdir] sys_chdir,
[SYS_dup] sys_dup,
[SYS_getpid] sys_getpid,
[SYS_sbrk] sys_sbrk,
[SYS_sleep] sys_sleep,
[SYS_uptime] sys_uptime,
[SYS_open] sys_open,
[SYS_write] sys_write,
[SYS_mknod] sys_mknod,
[SYS_unlink] sys_unlink,
[SYS_link] sys_link,
[SYS_mkdir] sys_mkdir,
[SYS_close] sys_close,
[SYS_fork] sys_fork, [SYS_exit] sys_exit, [SYS_wait] sys_wait, [SYS_pipe] sys_pipe,
[SYS_read] sys_read, [SYS_kill] sys_kill, [SYS_exec] sys_exec, [SYS_fstat] sys_fstat,
[SYS_chdir] sys_chdir, [SYS_dup] sys_dup, [SYS_getpid] sys_getpid, [SYS_sbrk] sys_sbrk,
[SYS_sleep] sys_sleep, [SYS_uptime] sys_uptime, [SYS_open] sys_open, [SYS_write] sys_write,
[SYS_mknod] sys_mknod, [SYS_unlink] sys_unlink, [SYS_link] sys_link, [SYS_mkdir] sys_mkdir,
[SYS_close] sys_close,
};
void
syscall(void)
{
int num;
int num;
struct proc *p = myproc();
num = p->trapframe->a7;
@ -140,8 +125,7 @@ syscall(void)
// and store its return value in p->trapframe->a0
p->trapframe->a0 = syscalls[num]();
} else {
printf("%d %s: unknown sys call %d\n",
p->pid, p->name, num);
printf("%d %s: unknown sys call %d\n", p->pid, p->name, num);
p->trapframe->a0 = -1;
}
}

View file

@ -1,13 +1,13 @@
// System call numbers
#define SYS_fork 1
#define SYS_exit 2
#define SYS_wait 3
#define SYS_pipe 4
#define SYS_read 5
#define SYS_kill 6
#define SYS_exec 7
#define SYS_fstat 8
#define SYS_chdir 9
#define SYS_fork 1
#define SYS_exit 2
#define SYS_wait 3
#define SYS_pipe 4
#define SYS_read 5
#define SYS_kill 6
#define SYS_exec 7
#define SYS_fstat 8
#define SYS_chdir 9
#define SYS_dup 10
#define SYS_getpid 11
#define SYS_sbrk 12

View file

@ -21,11 +21,11 @@
static int
argfd(int n, int *pfd, struct file **pf)
{
int fd;
int fd;
struct file *f;
argint(n, &fd);
if(fd < 0 || fd >= NOFILE || (f=myproc()->ofile[fd]) == 0)
if(fd < 0 || fd >= NOFILE || (f = myproc()->ofile[fd]) == 0)
return -1;
if(pfd)
*pfd = fd;
@ -39,11 +39,11 @@ argfd(int n, int *pfd, struct file **pf)
static int
fdalloc(struct file *f)
{
int fd;
int fd;
struct proc *p = myproc();
for(fd = 0; fd < NOFILE; fd++){
if(p->ofile[fd] == 0){
for(fd = 0; fd < NOFILE; fd++) {
if(p->ofile[fd] == 0) {
p->ofile[fd] = f;
return fd;
}
@ -55,11 +55,11 @@ u64
sys_dup(void)
{
struct file *f;
int fd;
int fd;
if(argfd(0, 0, &f) < 0)
return -1;
if((fd=fdalloc(f)) < 0)
if((fd = fdalloc(f)) < 0)
return -1;
filedup(f);
return fd;
@ -69,8 +69,8 @@ u64
sys_read(void)
{
struct file *f;
int n;
u64 p;
int n;
u64 p;
argaddr(1, &p);
argint(2, &n);
@ -83,9 +83,9 @@ u64
sys_write(void)
{
struct file *f;
int n;
u64 p;
int n;
u64 p;
argaddr(1, &p);
argint(2, &n);
if(argfd(0, 0, &f) < 0)
@ -97,7 +97,7 @@ sys_write(void)
u64
sys_close(void)
{
int fd;
int fd;
struct file *f;
if(argfd(0, &fd, &f) < 0)
@ -111,7 +111,7 @@ u64
sys_fstat(void)
{
struct file *f;
u64 st; // user pointer to struct stat
u64 st; // user pointer to struct stat
argaddr(1, &st);
if(argfd(0, 0, &f) < 0)
@ -123,20 +123,20 @@ sys_fstat(void)
u64
sys_link(void)
{
char name[DIRSIZ], new[MAXPATH], old[MAXPATH];
char name[DIRSIZ], new[MAXPATH], old[MAXPATH];
struct inode *dp, *ip;
if(argstr(0, old, MAXPATH) < 0 || argstr(1, new, MAXPATH) < 0)
return -1;
begin_op();
if((ip = namei(old)) == 0){
if((ip = namei(old)) == 0) {
end_op();
return -1;
}
ilock(ip);
if(ip->type == T_DIR){
if(ip->type == T_DIR) {
iunlockput(ip);
end_op();
return -1;
@ -149,7 +149,7 @@ sys_link(void)
if((dp = nameiparent(new, name)) == 0)
goto bad;
ilock(dp);
if(dp->dev != ip->dev || dirlink(dp, name, ip->inum) < 0){
if(dp->dev != ip->dev || dirlink(dp, name, ip->inum) < 0) {
iunlockput(dp);
goto bad;
}
@ -173,10 +173,10 @@ bad:
static int
isdirempty(struct inode *dp)
{
int off;
int off;
struct dirent de;
for(off=2*sizeof(de); off<dp->size; off+=sizeof(de)){
for(off = 2 * sizeof(de); off < dp->size; off += sizeof(de)) {
if(readi(dp, 0, (u64)&de, off, sizeof(de)) != sizeof(de))
panic("isdirempty: readi");
if(de.inum != 0)
@ -190,14 +190,14 @@ sys_unlink(void)
{
struct inode *ip, *dp;
struct dirent de;
char name[DIRSIZ], path[MAXPATH];
u32 off;
char name[DIRSIZ], path[MAXPATH];
u32 off;
if(argstr(0, path, MAXPATH) < 0)
return -1;
begin_op();
if((dp = nameiparent(path, name)) == 0){
if((dp = nameiparent(path, name)) == 0) {
end_op();
return -1;
}
@ -214,7 +214,7 @@ sys_unlink(void)
if(ip->nlink < 1)
panic("unlink: nlink < 1");
if(ip->type == T_DIR && !isdirempty(ip)){
if(ip->type == T_DIR && !isdirempty(ip)) {
iunlockput(ip);
goto bad;
}
@ -222,7 +222,7 @@ sys_unlink(void)
memset(&de, 0, sizeof(de));
if(writei(dp, 0, (u64)&de, off, sizeof(de)) != sizeof(de))
panic("unlink: writei");
if(ip->type == T_DIR){
if(ip->type == T_DIR) {
dp->nlink--;
iupdate(dp);
}
@ -242,18 +242,18 @@ bad:
return -1;
}
static struct inode*
static struct inode *
create(char *path, short type, short major, short minor)
{
struct inode *ip, *dp;
char name[DIRSIZ];
char name[DIRSIZ];
if((dp = nameiparent(path, name)) == 0)
return 0;
ilock(dp);
if((ip = dirlookup(dp, name, 0)) != 0){
if((ip = dirlookup(dp, name, 0)) != 0) {
iunlockput(dp);
ilock(ip);
if(type == T_FILE && (ip->type == T_FILE || ip->type == T_DEVICE))
@ -262,7 +262,7 @@ create(char *path, short type, short major, short minor)
return 0;
}
if((ip = ialloc(dp->dev, type)) == 0){
if((ip = ialloc(dp->dev, type)) == 0) {
iunlockput(dp);
return 0;
}
@ -273,7 +273,7 @@ create(char *path, short type, short major, short minor)
ip->nlink = 1;
iupdate(ip);
if(type == T_DIR){ // Create . and .. entries.
if(type == T_DIR) { // Create . and .. entries.
// No ip->nlink++ for ".": avoid cyclic ref count.
if(dirlink(ip, ".", ip->inum) < 0 || dirlink(ip, "..", dp->inum) < 0)
goto fail;
@ -282,9 +282,9 @@ create(char *path, short type, short major, short minor)
if(dirlink(dp, name, ip->inum) < 0)
goto fail;
if(type == T_DIR){
if(type == T_DIR) {
// now that success is guaranteed:
dp->nlink++; // for ".."
dp->nlink++; // for ".."
iupdate(dp);
}
@ -292,7 +292,7 @@ create(char *path, short type, short major, short minor)
return ip;
fail:
fail:
// something went wrong. de-allocate ip.
ip->nlink = 0;
iupdate(ip);
@ -304,11 +304,11 @@ create(char *path, short type, short major, short minor)
u64
sys_open(void)
{
char path[MAXPATH];
int fd, omode;
struct file *f;
char path[MAXPATH];
int fd, omode;
struct file *f;
struct inode *ip;
int n;
int n;
argint(1, &omode);
if((n = argstr(0, path, MAXPATH)) < 0)
@ -316,32 +316,32 @@ sys_open(void)
begin_op();
if(omode & O_CREATE){
if(omode & O_CREATE) {
ip = create(path, T_FILE, 0, 0);
if(ip == 0){
if(ip == 0) {
end_op();
return -1;
}
} else {
if((ip = namei(path)) == 0){
if((ip = namei(path)) == 0) {
end_op();
return -1;
}
ilock(ip);
if(ip->type == T_DIR && omode != O_RDONLY){
if(ip->type == T_DIR && omode != O_RDONLY) {
iunlockput(ip);
end_op();
return -1;
}
}
if(ip->type == T_DEVICE && (ip->major < 0 || ip->major >= NDEV)){
if(ip->type == T_DEVICE && (ip->major < 0 || ip->major >= NDEV)) {
iunlockput(ip);
end_op();
return -1;
}
if((f = filealloc()) == 0 || (fd = fdalloc(f)) < 0){
if((f = filealloc()) == 0 || (fd = fdalloc(f)) < 0) {
if(f)
fileclose(f);
iunlockput(ip);
@ -349,7 +349,7 @@ sys_open(void)
return -1;
}
if(ip->type == T_DEVICE){
if(ip->type == T_DEVICE) {
f->type = FD_DEVICE;
f->major = ip->major;
} else {
@ -360,7 +360,7 @@ sys_open(void)
f->readable = !(omode & O_WRONLY);
f->writable = (omode & O_WRONLY) || (omode & O_RDWR);
if((omode & O_TRUNC) && ip->type == T_FILE){
if((omode & O_TRUNC) && ip->type == T_FILE) {
itrunc(ip);
}
@ -373,11 +373,11 @@ sys_open(void)
u64
sys_mkdir(void)
{
char path[MAXPATH];
char path[MAXPATH];
struct inode *ip;
begin_op();
if(argstr(0, path, MAXPATH) < 0 || (ip = create(path, T_DIR, 0, 0)) == 0){
if(argstr(0, path, MAXPATH) < 0 || (ip = create(path, T_DIR, 0, 0)) == 0) {
end_op();
return -1;
}
@ -390,14 +390,13 @@ u64
sys_mknod(void)
{
struct inode *ip;
char path[MAXPATH];
int major, minor;
char path[MAXPATH];
int major, minor;
begin_op();
argint(1, &major);
argint(2, &minor);
if((argstr(0, path, MAXPATH)) < 0 ||
(ip = create(path, T_DEVICE, major, minor)) == 0){
if((argstr(0, path, MAXPATH)) < 0 || (ip = create(path, T_DEVICE, major, minor)) == 0) {
end_op();
return -1;
}
@ -409,17 +408,17 @@ sys_mknod(void)
u64
sys_chdir(void)
{
char path[MAXPATH];
char path[MAXPATH];
struct inode *ip;
struct proc *p = myproc();
struct proc *p = myproc();
begin_op();
if(argstr(0, path, MAXPATH) < 0 || (ip = namei(path)) == 0){
if(argstr(0, path, MAXPATH) < 0 || (ip = namei(path)) == 0) {
end_op();
return -1;
}
ilock(ip);
if(ip->type != T_DIR){
if(ip->type != T_DIR) {
iunlockput(ip);
end_op();
return -1;
@ -435,22 +434,22 @@ u64
sys_exec(void)
{
char path[MAXPATH], *argv[MAXARG];
int i;
u64 uargv, uarg;
int i;
u64 uargv, uarg;
argaddr(1, &uargv);
if(argstr(0, path, MAXPATH) < 0) {
return -1;
}
memset(argv, 0, sizeof(argv));
for(i=0;; i++){
if(i >= NELEM(argv)){
for(i = 0;; i++) {
if(i >= NELEM(argv)) {
goto bad;
}
if(fetchaddr(uargv+sizeof(u64)*i, (u64*)&uarg) < 0){
if(fetchaddr(uargv + sizeof(u64) * i, (u64 *)&uarg) < 0) {
goto bad;
}
if(uarg == 0){
if(uarg == 0) {
argv[i] = 0;
break;
}
@ -468,7 +467,7 @@ sys_exec(void)
return ret;
bad:
bad:
for(i = 0; i < NELEM(argv) && argv[i] != 0; i++)
kfree(argv[i]);
return -1;
@ -477,24 +476,24 @@ sys_exec(void)
u64
sys_pipe(void)
{
u64 fdarray; // user pointer to array of two integers
u64 fdarray; // user pointer to array of two integers
struct file *rf, *wf;
int fd0, fd1;
int fd0, fd1;
struct proc *p = myproc();
argaddr(0, &fdarray);
if(pipealloc(&rf, &wf) < 0)
return -1;
fd0 = -1;
if((fd0 = fdalloc(rf)) < 0 || (fd1 = fdalloc(wf)) < 0){
if((fd0 = fdalloc(rf)) < 0 || (fd1 = fdalloc(wf)) < 0) {
if(fd0 >= 0)
p->ofile[fd0] = 0;
fileclose(rf);
fileclose(wf);
return -1;
}
if(copyout(p->pagetable, fdarray, (char*)&fd0, sizeof(fd0)) < 0 ||
copyout(p->pagetable, fdarray+sizeof(fd0), (char *)&fd1, sizeof(fd1)) < 0){
if(copyout(p->pagetable, fdarray, (char *)&fd0, sizeof(fd0)) < 0
|| copyout(p->pagetable, fdarray + sizeof(fd0), (char *)&fd1, sizeof(fd1)) < 0) {
p->ofile[fd0] = 0;
p->ofile[fd1] = 0;
fileclose(rf);

View file

@ -12,7 +12,7 @@ sys_exit(void)
int n;
argint(0, &n);
exit(n);
return 0; // not reached
return 0; // not reached
}
u64
@ -57,8 +57,8 @@ sys_sleep(void)
argint(0, &n);
acquire(&tickslock);
ticks0 = ticks;
while(ticks - ticks0 < n){
if(killed(myproc())){
while(ticks - ticks0 < n) {
if(killed(myproc())) {
release(&tickslock);
return -1;
}

View file

@ -7,7 +7,7 @@
#include "defs.h"
struct spinlock tickslock;
u32 ticks;
u32 ticks;
extern char trampoline[], uservec[], userret[];
@ -46,11 +46,11 @@ usertrap(void)
w_stvec((u64)kernelvec);
struct proc *p = myproc();
// save user program counter.
p->trapframe->epc = r_sepc();
if(r_scause() == 8){
if(r_scause() == 8) {
// system call
if(killed(p))
@ -65,7 +65,7 @@ usertrap(void)
intr_on();
syscall();
} else if((which_dev = devintr()) != 0){
} else if((which_dev = devintr()) != 0) {
// ok
} else {
printf("usertrap(): unexpected scause %p pid=%d\n", r_scause(), p->pid);
@ -105,11 +105,11 @@ usertrapret(void)
p->trapframe->kernel_satp = r_satp(); // kernel page table
p->trapframe->kernel_sp = p->kstack + PGSIZE; // process's kernel stack
p->trapframe->kernel_trap = (u64)usertrap;
p->trapframe->kernel_hartid = r_tp(); // hartid for cpuid()
p->trapframe->kernel_hartid = r_tp(); // hartid for cpuid()
// set up the registers that trampoline.S's sret will use
// to get to user space.
// set S Previous Privilege mode to User.
unsigned long x = r_sstatus();
x &= ~SSTATUS_SPP; // clear SPP to 0 for user mode
@ -122,7 +122,7 @@ usertrapret(void)
// tell trampoline.S the user page table to switch to.
u64 satp = MAKE_SATP(p->pagetable);
// jump to userret in trampoline.S at the top of memory, which
// jump to userret in trampoline.S at the top of memory, which
// switches to the user page table, restores user registers,
// and switches to user mode with sret.
u64 trampoline_userret = TRAMPOLINE + (userret - trampoline);
@ -131,20 +131,20 @@ usertrapret(void)
// interrupts and exceptions from kernel code go here via kernelvec,
// on whatever the current kernel stack is.
void
void
kerneltrap()
{
int which_dev = 0;
u64 sepc = r_sepc();
u64 sstatus = r_sstatus();
u64 scause = r_scause();
if((sstatus & SSTATUS_SPP) == 0)
panic("kerneltrap: not from supervisor mode");
if(intr_get() != 0)
panic("kerneltrap: interrupts enabled");
if((which_dev = devintr()) == 0){
if((which_dev = devintr()) == 0) {
printf("scause %p\n", scause);
printf("sepc=%p stval=%p\n", r_sepc(), r_stval());
panic("kerneltrap");
@ -179,18 +179,17 @@ devintr()
{
u64 scause = r_scause();
if((scause & 0x8000000000000000L) &&
(scause & 0xff) == 9){
if((scause & 0x8000000000000000L) && (scause & 0xff) == 9) {
// this is a supervisor external interrupt, via PLIC.
// irq indicates which device interrupted.
int irq = plic_claim();
if(irq == UART0_IRQ){
if(irq == UART0_IRQ) {
uartintr();
} else if(irq == VIRTIO0_IRQ){
} else if(irq == VIRTIO0_IRQ) {
virtio_disk_intr();
} else if(irq){
} else if(irq) {
printf("unexpected interrupt irq=%d\n", irq);
}
@ -201,14 +200,14 @@ devintr()
plic_complete(irq);
return 1;
} else if(scause == 0x8000000000000001L){
} else if(scause == 0x8000000000000001L) {
// software interrupt from a machine-mode timer interrupt,
// forwarded by timervec in kernelvec.S.
if(cpuid() == 0){
if(cpuid() == 0) {
clockintr();
}
// acknowledge the software interrupt by clearing
// the SSIP bit in sip.
w_sip(r_sip() & ~2);
@ -218,4 +217,3 @@ devintr()
return 0;
}
}

View file

@ -1,6 +1,6 @@
typedef unsigned char u8;
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
typedef unsigned long u64;
typedef unsigned int u32;
typedef unsigned long u64;
typedef u64 pde_t;

View file

@ -19,31 +19,31 @@
// some have different meanings for
// read vs write.
// see http://byterunner.com/16550.html
#define RHR 0 // receive holding register (for input bytes)
#define THR 0 // transmit holding register (for output bytes)
#define IER 1 // interrupt enable register
#define IER_RX_ENABLE (1<<0)
#define IER_TX_ENABLE (1<<1)
#define FCR 2 // FIFO control register
#define FCR_FIFO_ENABLE (1<<0)
#define FCR_FIFO_CLEAR (3<<1) // clear the content of the two FIFOs
#define ISR 2 // interrupt status register
#define LCR 3 // line control register
#define LCR_EIGHT_BITS (3<<0)
#define LCR_BAUD_LATCH (1<<7) // special mode to set baud rate
#define LSR 5 // line status register
#define LSR_RX_READY (1<<0) // input is waiting to be read from RHR
#define LSR_TX_IDLE (1<<5) // THR can accept another character to send
#define RHR 0 // receive holding register (for input bytes)
#define THR 0 // transmit holding register (for output bytes)
#define IER 1 // interrupt enable register
#define IER_RX_ENABLE (1 << 0)
#define IER_TX_ENABLE (1 << 1)
#define FCR 2 // FIFO control register
#define FCR_FIFO_ENABLE (1 << 0)
#define FCR_FIFO_CLEAR (3 << 1) // clear the content of the two FIFOs
#define ISR 2 // interrupt status register
#define LCR 3 // line control register
#define LCR_EIGHT_BITS (3 << 0)
#define LCR_BAUD_LATCH (1 << 7) // special mode to set baud rate
#define LSR 5 // line status register
#define LSR_RX_READY (1 << 0) // input is waiting to be read from RHR
#define LSR_TX_IDLE (1 << 5) // THR can accept another character to send
#define ReadReg(reg) (*(Reg(reg)))
#define ReadReg(reg) (*(Reg(reg)))
#define WriteReg(reg, v) (*(Reg(reg)) = (v))
// the transmit output buffer.
struct spinlock uart_tx_lock;
#define UART_TX_BUF_SIZE 32
char uart_tx_buf[UART_TX_BUF_SIZE];
u64 uart_tx_w; // write next to uart_tx_buf[uart_tx_w % UART_TX_BUF_SIZE]
u64 uart_tx_r; // read next from uart_tx_buf[uart_tx_r % UART_TX_BUF_SIZE]
u64 uart_tx_w; // write next to uart_tx_buf[uart_tx_w % UART_TX_BUF_SIZE]
u64 uart_tx_r; // read next from uart_tx_buf[uart_tx_r % UART_TX_BUF_SIZE]
extern volatile int panicked; // from printf.c
@ -88,11 +88,11 @@ uartputc(int c)
{
acquire(&uart_tx_lock);
if(panicked){
if(panicked) {
for(;;)
;
}
while(uart_tx_w == uart_tx_r + UART_TX_BUF_SIZE){
while(uart_tx_w == uart_tx_r + UART_TX_BUF_SIZE) {
// buffer is full.
// wait for uartstart() to open up space in the buffer.
sleep(&uart_tx_r, &uart_tx_lock);
@ -103,8 +103,7 @@ uartputc(int c)
release(&uart_tx_lock);
}
// alternate version of uartputc() that doesn't
// alternate version of uartputc() that doesn't
// use interrupts, for use by kernel printf() and
// to echo characters. it spins waiting for the uart's
// output register to be empty.
@ -113,7 +112,7 @@ uartputc_sync(int c)
{
push_off();
if(panicked){
if(panicked) {
for(;;)
;
}
@ -133,25 +132,25 @@ uartputc_sync(int c)
void
uartstart()
{
while(1){
if(uart_tx_w == uart_tx_r){
while(1) {
if(uart_tx_w == uart_tx_r) {
// transmit buffer is empty.
return;
}
if((ReadReg(LSR) & LSR_TX_IDLE) == 0){
if((ReadReg(LSR) & LSR_TX_IDLE) == 0) {
// the UART transmit holding register is full,
// so we cannot give it another byte.
// it will interrupt when it's ready for a new byte.
return;
}
int c = uart_tx_buf[uart_tx_r % UART_TX_BUF_SIZE];
uart_tx_r += 1;
// maybe uartputc() is waiting for space in the buffer.
wakeup(&uart_tx_r);
WriteReg(THR, c);
}
}
@ -161,7 +160,7 @@ uartstart()
int
uartgetc(void)
{
if(ReadReg(LSR) & 0x01){
if(ReadReg(LSR) & 0x01) {
// input data is ready.
return ReadReg(RHR);
} else {
@ -176,7 +175,7 @@ void
uartintr(void)
{
// read and process incoming characters.
while(1){
while(1) {
int c = uartgetc();
if(c == -1)
break;

View file

@ -9,38 +9,38 @@
// virtio mmio control registers, mapped starting at 0x10001000.
// from qemu virtio_mmio.h
#define VIRTIO_MMIO_MAGIC_VALUE 0x000 // 0x74726976
#define VIRTIO_MMIO_VERSION 0x004 // version; should be 2
#define VIRTIO_MMIO_DEVICE_ID 0x008 // device type; 1 is net, 2 is disk
#define VIRTIO_MMIO_VENDOR_ID 0x00c // 0x554d4551
#define VIRTIO_MMIO_DEVICE_FEATURES 0x010
#define VIRTIO_MMIO_DRIVER_FEATURES 0x020
#define VIRTIO_MMIO_QUEUE_SEL 0x030 // select queue, write-only
#define VIRTIO_MMIO_QUEUE_NUM_MAX 0x034 // max size of current queue, read-only
#define VIRTIO_MMIO_QUEUE_NUM 0x038 // size of current queue, write-only
#define VIRTIO_MMIO_QUEUE_READY 0x044 // ready bit
#define VIRTIO_MMIO_QUEUE_NOTIFY 0x050 // write-only
#define VIRTIO_MMIO_INTERRUPT_STATUS 0x060 // read-only
#define VIRTIO_MMIO_INTERRUPT_ACK 0x064 // write-only
#define VIRTIO_MMIO_STATUS 0x070 // read/write
#define VIRTIO_MMIO_QUEUE_DESC_LOW 0x080 // physical address for descriptor table, write-only
#define VIRTIO_MMIO_QUEUE_DESC_HIGH 0x084
#define VIRTIO_MMIO_DRIVER_DESC_LOW 0x090 // physical address for available ring, write-only
#define VIRTIO_MMIO_DRIVER_DESC_HIGH 0x094
#define VIRTIO_MMIO_DEVICE_DESC_LOW 0x0a0 // physical address for used ring, write-only
#define VIRTIO_MMIO_DEVICE_DESC_HIGH 0x0a4
#define VIRTIO_MMIO_MAGIC_VALUE 0x000 // 0x74726976
#define VIRTIO_MMIO_VERSION 0x004 // version; should be 2
#define VIRTIO_MMIO_DEVICE_ID 0x008 // device type; 1 is net, 2 is disk
#define VIRTIO_MMIO_VENDOR_ID 0x00c // 0x554d4551
#define VIRTIO_MMIO_DEVICE_FEATURES 0x010
#define VIRTIO_MMIO_DRIVER_FEATURES 0x020
#define VIRTIO_MMIO_QUEUE_SEL 0x030 // select queue, write-only
#define VIRTIO_MMIO_QUEUE_NUM_MAX 0x034 // max size of current queue, read-only
#define VIRTIO_MMIO_QUEUE_NUM 0x038 // size of current queue, write-only
#define VIRTIO_MMIO_QUEUE_READY 0x044 // ready bit
#define VIRTIO_MMIO_QUEUE_NOTIFY 0x050 // write-only
#define VIRTIO_MMIO_INTERRUPT_STATUS 0x060 // read-only
#define VIRTIO_MMIO_INTERRUPT_ACK 0x064 // write-only
#define VIRTIO_MMIO_STATUS 0x070 // read/write
#define VIRTIO_MMIO_QUEUE_DESC_LOW 0x080 // physical address for descriptor table, write-only
#define VIRTIO_MMIO_QUEUE_DESC_HIGH 0x084
#define VIRTIO_MMIO_DRIVER_DESC_LOW 0x090 // physical address for available ring, write-only
#define VIRTIO_MMIO_DRIVER_DESC_HIGH 0x094
#define VIRTIO_MMIO_DEVICE_DESC_LOW 0x0a0 // physical address for used ring, write-only
#define VIRTIO_MMIO_DEVICE_DESC_HIGH 0x0a4
// status register bits, from qemu virtio_config.h
#define VIRTIO_CONFIG_S_ACKNOWLEDGE 1
#define VIRTIO_CONFIG_S_DRIVER 2
#define VIRTIO_CONFIG_S_DRIVER_OK 4
#define VIRTIO_CONFIG_S_FEATURES_OK 8
#define VIRTIO_CONFIG_S_ACKNOWLEDGE 1
#define VIRTIO_CONFIG_S_DRIVER 2
#define VIRTIO_CONFIG_S_DRIVER_OK 4
#define VIRTIO_CONFIG_S_FEATURES_OK 8
// device feature bits
#define VIRTIO_BLK_F_RO 5 /* Disk is read-only */
#define VIRTIO_BLK_F_SCSI 7 /* Supports scsi command passthru */
#define VIRTIO_BLK_F_CONFIG_WCE 11 /* Writeback mode available in config */
#define VIRTIO_BLK_F_MQ 12 /* support more than one vq */
#define VIRTIO_BLK_F_RO 5 /* Disk is read-only */
#define VIRTIO_BLK_F_SCSI 7 /* Supports scsi command passthru */
#define VIRTIO_BLK_F_CONFIG_WCE 11 /* Writeback mode available in config */
#define VIRTIO_BLK_F_MQ 12 /* support more than one vq */
#define VIRTIO_F_ANY_LAYOUT 27
#define VIRTIO_RING_F_INDIRECT_DESC 28
#define VIRTIO_RING_F_EVENT_IDX 29
@ -61,8 +61,8 @@ struct virtq_desc {
// the (entire) avail ring, from the spec.
struct virtq_avail {
u16 flags; // always zero
u16 idx; // driver will write ring[idx] next
u16 flags; // always zero
u16 idx; // driver will write ring[idx] next
u16 ring[NUM]; // descriptor numbers of chain heads
u16 unused;
};
@ -70,13 +70,13 @@ struct virtq_avail {
// one entry in the "used" ring, with which the
// device tells the driver about completed requests.
struct virtq_used_elem {
u32 id; // index of start of completed descriptor chain
u32 id; // index of start of completed descriptor chain
u32 len;
};
struct virtq_used {
u16 flags; // always zero
u16 idx; // device increments when it adds a ring[] entry
u16 flags; // always zero
u16 idx; // device increments when it adds a ring[] entry
struct virtq_used_elem ring[NUM];
};

View file

@ -39,23 +39,23 @@ static struct disk {
struct virtq_used *used;
// our own book-keeping.
char free[NUM]; // is a descriptor free?
u16 used_idx; // we've looked this far in used[2..NUM].
char free[NUM]; // is a descriptor free?
u16 used_idx; // we've looked this far in used[2..NUM].
// track info about in-flight operations,
// for use when completion interrupt arrives.
// indexed by first descriptor index of chain.
struct {
struct buf *b;
char status;
char status;
} info[NUM];
// disk command headers.
// one-for-one with descriptors, for convenience.
struct virtio_blk_req ops[NUM];
struct spinlock vdisk_lock;
} disk;
void
@ -65,13 +65,11 @@ virtio_disk_init(void)
initlock(&disk.vdisk_lock, "virtio_disk");
if(*R(VIRTIO_MMIO_MAGIC_VALUE) != 0x74726976 ||
*R(VIRTIO_MMIO_VERSION) != 2 ||
*R(VIRTIO_MMIO_DEVICE_ID) != 2 ||
*R(VIRTIO_MMIO_VENDOR_ID) != 0x554d4551){
if(*R(VIRTIO_MMIO_MAGIC_VALUE) != 0x74726976 || *R(VIRTIO_MMIO_VERSION) != 2 || *R(VIRTIO_MMIO_DEVICE_ID) != 2
|| *R(VIRTIO_MMIO_VENDOR_ID) != 0x554d4551) {
panic("could not find virtio disk");
}
// reset device
*R(VIRTIO_MMIO_STATUS) = status;
@ -156,8 +154,8 @@ virtio_disk_init(void)
static int
alloc_desc()
{
for(int i = 0; i < NUM; i++){
if(disk.free[i]){
for(int i = 0; i < NUM; i++) {
if(disk.free[i]) {
disk.free[i] = 0;
return i;
}
@ -185,7 +183,7 @@ free_desc(int i)
static void
free_chain(int i)
{
while(1){
while(1) {
int flag = disk.desc[i].flags;
int nxt = disk.desc[i].next;
free_desc(i);
@ -201,9 +199,9 @@ free_chain(int i)
static int
alloc3_desc(int *idx)
{
for(int i = 0; i < 3; i++){
for(int i = 0; i < 3; i++) {
idx[i] = alloc_desc();
if(idx[i] < 0){
if(idx[i] < 0) {
for(int j = 0; j < i; j++)
free_desc(idx[j]);
return -1;
@ -225,7 +223,7 @@ virtio_disk_rw(struct buf *b, int write)
// allocate the three descriptors.
int idx[3];
while(1){
while(1) {
if(alloc3_desc(idx) == 0) {
break;
}
@ -244,12 +242,12 @@ virtio_disk_rw(struct buf *b, int write)
buf0->reserved = 0;
buf0->sector = sector;
disk.desc[idx[0]].addr = (u64) buf0;
disk.desc[idx[0]].addr = (u64)buf0;
disk.desc[idx[0]].len = sizeof(struct virtio_blk_req);
disk.desc[idx[0]].flags = VRING_DESC_F_NEXT;
disk.desc[idx[0]].next = idx[1];
disk.desc[idx[1]].addr = (u64) b->data;
disk.desc[idx[1]].addr = (u64)b->data;
disk.desc[idx[1]].len = BSIZE;
if(write)
disk.desc[idx[1]].flags = 0; // device reads b->data
@ -259,7 +257,7 @@ virtio_disk_rw(struct buf *b, int write)
disk.desc[idx[1]].next = idx[2];
disk.info[idx[0]].status = 0xff; // device writes 0 on success
disk.desc[idx[2]].addr = (u64) &disk.info[idx[0]].status;
disk.desc[idx[2]].addr = (u64)&disk.info[idx[0]].status;
disk.desc[idx[2]].len = 1;
disk.desc[idx[2]].flags = VRING_DESC_F_WRITE; // device writes the status
disk.desc[idx[2]].next = 0;
@ -309,7 +307,7 @@ virtio_disk_intr()
// the device increments disk.used->idx when it
// adds an entry to the used ring.
while(disk.used_idx != disk.used->idx){
while(disk.used_idx != disk.used->idx) {
__sync_synchronize();
int id = disk.used->ring[disk.used_idx % NUM].id;
@ -317,7 +315,7 @@ virtio_disk_intr()
panic("virtio_disk_intr status");
struct buf *b = disk.info[id].b;
b->disk = 0; // disk is done with buf
b->disk = 0; // disk is done with buf
wakeup(b);
disk.used_idx += 1;

View file

@ -11,7 +11,7 @@
*/
pagetable_t kernel_pagetable;
extern char etext[]; // kernel.ld sets this to end of kernel code.
extern char etext[]; // kernel.ld sets this to end of kernel code.
extern char trampoline[]; // trampoline.S
@ -21,7 +21,7 @@ kvmmake(void)
{
pagetable_t kpgtbl;
kpgtbl = (pagetable_t) kalloc();
kpgtbl = (pagetable_t)kalloc();
memset(kpgtbl, 0, PGSIZE);
// uart registers
@ -34,10 +34,10 @@ kvmmake(void)
kvmmap(kpgtbl, PLIC, PLIC, 0x400000, PTE_R | PTE_W);
// map kernel text executable and read-only.
kvmmap(kpgtbl, KERNBASE, KERNBASE, (u64)etext-KERNBASE, PTE_R | PTE_X);
kvmmap(kpgtbl, KERNBASE, KERNBASE, (u64)etext - KERNBASE, PTE_R | PTE_X);
// map kernel data and the physical RAM we'll make use of.
kvmmap(kpgtbl, (u64)etext, (u64)etext, PHYSTOP-(u64)etext, PTE_R | PTE_W);
kvmmap(kpgtbl, (u64)etext, (u64)etext, PHYSTOP - (u64)etext, PTE_R | PTE_W);
// map the trampoline for trap entry/exit to
// the highest virtual address in the kernel.
@ -45,7 +45,7 @@ kvmmake(void)
// allocate and map a kernel stack for each process.
proc_mapstacks(kpgtbl);
return kpgtbl;
}
@ -93,7 +93,7 @@ walk(pagetable_t pagetable, u64 va, int alloc)
if(*pte & PTE_V) {
pagetable = (pagetable_t)PTE2PA(*pte);
} else {
if(!alloc || (pagetable = (pde_t*)kalloc()) == 0)
if(!alloc || (pagetable = (pde_t *)kalloc()) == 0)
return 0;
memset(pagetable, 0, PGSIZE);
*pte = PA2PTE(pagetable) | PTE_V;
@ -109,7 +109,7 @@ u64
walkaddr(pagetable_t pagetable, u64 va)
{
pte_t *pte;
u64 pa;
u64 pa;
if(va >= MAXVA)
return 0;
@ -142,15 +142,15 @@ kvmmap(pagetable_t kpgtbl, u64 va, u64 pa, u64 sz, int perm)
int
mappages(pagetable_t pagetable, u64 va, u64 size, u64 pa, int perm)
{
u64 a, last;
u64 a, last;
pte_t *pte;
if(size == 0)
panic("mappages: size");
a = PGROUNDDOWN(va);
last = PGROUNDDOWN(va + size - 1);
for(;;){
for(;;) {
if((pte = walk(pagetable, a, 1)) == 0)
return -1;
if(*pte & PTE_V)
@ -170,22 +170,22 @@ mappages(pagetable_t pagetable, u64 va, u64 size, u64 pa, int perm)
void
uvmunmap(pagetable_t pagetable, u64 va, u64 npages, int do_free)
{
u64 a;
u64 a;
pte_t *pte;
if((va % PGSIZE) != 0)
panic("uvmunmap: not aligned");
for(a = va; a < va + npages*PGSIZE; a += PGSIZE){
for(a = va; a < va + npages * PGSIZE; a += PGSIZE) {
if((pte = walk(pagetable, a, 0)) == 0)
panic("uvmunmap: walk");
if((*pte & PTE_V) == 0)
panic("uvmunmap: not mapped");
if(PTE_FLAGS(*pte) == PTE_V)
panic("uvmunmap: not a leaf");
if(do_free){
if(do_free) {
u64 pa = PTE2PA(*pte);
kfree((void*)pa);
kfree((void *)pa);
}
*pte = 0;
}
@ -197,7 +197,7 @@ pagetable_t
uvmcreate()
{
pagetable_t pagetable;
pagetable = (pagetable_t) kalloc();
pagetable = (pagetable_t)kalloc();
if(pagetable == 0)
return 0;
memset(pagetable, 0, PGSIZE);
@ -216,7 +216,7 @@ uvmfirst(pagetable_t pagetable, u8 *src, u32 sz)
panic("uvmfirst: more than a page");
mem = kalloc();
memset(mem, 0, PGSIZE);
mappages(pagetable, 0, PGSIZE, (u64)mem, PTE_W|PTE_R|PTE_X|PTE_U);
mappages(pagetable, 0, PGSIZE, (u64)mem, PTE_W | PTE_R | PTE_X | PTE_U);
memmove(mem, src, sz);
}
@ -226,20 +226,20 @@ u64
uvmalloc(pagetable_t pagetable, u64 oldsz, u64 newsz, int xperm)
{
char *mem;
u64 a;
u64 a;
if(newsz < oldsz)
return oldsz;
oldsz = PGROUNDUP(oldsz);
for(a = oldsz; a < newsz; a += PGSIZE){
for(a = oldsz; a < newsz; a += PGSIZE) {
mem = kalloc();
if(mem == 0){
if(mem == 0) {
uvmdealloc(pagetable, a, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if(mappages(pagetable, a, PGSIZE, (u64)mem, PTE_R|PTE_U|xperm) != 0){
if(mappages(pagetable, a, PGSIZE, (u64)mem, PTE_R | PTE_U | xperm) != 0) {
kfree(mem);
uvmdealloc(pagetable, a, oldsz);
return 0;
@ -258,7 +258,7 @@ uvmdealloc(pagetable_t pagetable, u64 oldsz, u64 newsz)
if(newsz >= oldsz)
return oldsz;
if(PGROUNDUP(newsz) < PGROUNDUP(oldsz)){
if(PGROUNDUP(newsz) < PGROUNDUP(oldsz)) {
int npages = (PGROUNDUP(oldsz) - PGROUNDUP(newsz)) / PGSIZE;
uvmunmap(pagetable, PGROUNDUP(newsz), npages, 1);
}
@ -272,18 +272,18 @@ void
freewalk(pagetable_t pagetable)
{
// there are 2^9 = 512 PTEs in a page table.
for(int i = 0; i < 512; i++){
for(int i = 0; i < 512; i++) {
pte_t pte = pagetable[i];
if((pte & PTE_V) && (pte & (PTE_R|PTE_W|PTE_X)) == 0){
if((pte & PTE_V) && (pte & (PTE_R | PTE_W | PTE_X)) == 0) {
// this PTE points to a lower-level page table.
u64 child = PTE2PA(pte);
freewalk((pagetable_t)child);
pagetable[i] = 0;
} else if(pte & PTE_V){
} else if(pte & PTE_V) {
panic("freewalk: leaf");
}
}
kfree((void*)pagetable);
kfree((void *)pagetable);
}
// Free user memory pages,
@ -292,7 +292,7 @@ void
uvmfree(pagetable_t pagetable, u64 sz)
{
if(sz > 0)
uvmunmap(pagetable, 0, PGROUNDUP(sz)/PGSIZE, 1);
uvmunmap(pagetable, 0, PGROUNDUP(sz) / PGSIZE, 1);
freewalk(pagetable);
}
@ -306,11 +306,11 @@ int
uvmcopy(pagetable_t old, pagetable_t new, u64 sz)
{
pte_t *pte;
u64 pa, i;
u32 flags;
char *mem;
u64 pa, i;
u32 flags;
char *mem;
for(i = 0; i < sz; i += PGSIZE){
for(i = 0; i < sz; i += PGSIZE) {
if((pte = walk(old, i, 0)) == 0)
panic("uvmcopy: pte should exist");
if((*pte & PTE_V) == 0)
@ -319,15 +319,15 @@ uvmcopy(pagetable_t old, pagetable_t new, u64 sz)
flags = PTE_FLAGS(*pte);
if((mem = kalloc()) == 0)
goto err;
memmove(mem, (char*)pa, PGSIZE);
if(mappages(new, i, PGSIZE, (u64)mem, flags) != 0){
memmove(mem, (char *)pa, PGSIZE);
if(mappages(new, i, PGSIZE, (u64)mem, flags) != 0) {
kfree(mem);
goto err;
}
}
return 0;
err:
err:
uvmunmap(new, 0, i / PGSIZE, 1);
return -1;
}
@ -338,7 +338,7 @@ void
uvmclear(pagetable_t pagetable, u64 va)
{
pte_t *pte;
pte = walk(pagetable, va, 0);
if(pte == 0)
panic("uvmclear");
@ -353,7 +353,7 @@ copyout(pagetable_t pagetable, u64 dstva, char *src, u64 len)
{
u64 n, va0, pa0;
while(len > 0){
while(len > 0) {
va0 = PGROUNDDOWN(dstva);
pa0 = walkaddr(pagetable, va0);
if(pa0 == 0)
@ -378,7 +378,7 @@ copyin(pagetable_t pagetable, char *dst, u64 srcva, u64 len)
{
u64 n, va0, pa0;
while(len > 0){
while(len > 0) {
va0 = PGROUNDDOWN(srcva);
pa0 = walkaddr(pagetable, va0);
if(pa0 == 0)
@ -405,7 +405,7 @@ copyinstr(pagetable_t pagetable, char *dst, u64 srcva, u64 max)
u64 n, va0, pa0;
int got_null = 0;
while(got_null == 0 && max > 0){
while(got_null == 0 && max > 0) {
va0 = PGROUNDDOWN(srcva);
pa0 = walkaddr(pagetable, va0);
if(pa0 == 0)
@ -414,9 +414,9 @@ copyinstr(pagetable_t pagetable, char *dst, u64 srcva, u64 max)
if(n > max)
n = max;
char *p = (char *) (pa0 + (srcva - va0));
while(n > 0){
if(*p == '\0'){
char *p = (char *)(pa0 + (srcva - va0));
while(n > 0) {
if(*p == '\0') {
*dst = '\0';
got_null = 1;
break;
@ -431,7 +431,7 @@ copyinstr(pagetable_t pagetable, char *dst, u64 srcva, u64 max)
srcva = va0 + PGSIZE;
}
if(got_null){
if(got_null) {
return 0;
} else {
return -1;

View file

@ -5,14 +5,19 @@
#include <fcntl.h>
#include <assert.h>
#define stat xv6_stat // avoid clash with host struct stat
#define stat xv6_stat // avoid clash with host struct stat
#include "kernel/types.h"
#include "kernel/fs.h"
#include "kernel/stat.h"
#include "kernel/param.h"
#ifndef static_assert
#define static_assert(a, b) do { switch (0) case 0: case (a): ; } while (0)
#define static_assert(a, b) \
do { \
switch(0) \
case 0: \
case(a):; \
} while(0)
#endif
#define NINODES 200
@ -20,22 +25,21 @@
// Disk layout:
// [ boot block | sb block | log | inode blocks | free bit map | data blocks ]
int nbitmap = FSSIZE/(BSIZE*8) + 1;
int nbitmap = FSSIZE / (BSIZE * 8) + 1;
int ninodeblocks = NINODES / IPB + 1;
int nlog = LOGSIZE;
int nmeta; // Number of meta blocks (boot, sb, nlog, inode, bitmap)
int nblocks; // Number of data blocks
int nmeta; // Number of meta blocks (boot, sb, nlog, inode, bitmap)
int nblocks; // Number of data blocks
int fsfd;
int fsfd;
struct superblock sb;
char zeroes[BSIZE];
uint freeinode = 1;
uint freeblock;
char zeroes[BSIZE];
uint freeinode = 1;
uint freeblock;
void balloc(int);
void wsect(uint, void*);
void winode(uint, struct dinode*);
void wsect(uint, void *);
void winode(uint, struct dinode *);
void rinode(uint inum, struct dinode *ip);
void rsect(uint sec, void *buf);
uint ialloc(ushort type);
@ -47,7 +51,7 @@ ushort
xshort(ushort x)
{
ushort y;
u8 *a = (u8*)&y;
u8 *a = (u8 *)&y;
a[0] = x;
a[1] = x >> 8;
return y;
@ -57,7 +61,7 @@ uint
xint(uint x)
{
uint y;
u8 *a = (u8*)&y;
u8 *a = (u8 *)&y;
a[0] = x;
a[1] = x >> 8;
a[2] = x >> 16;
@ -68,16 +72,15 @@ xint(uint x)
int
main(int argc, char *argv[])
{
int i, cc, fd;
uint rootino, inum, off;
int i, cc, fd;
uint rootino, inum, off;
struct dirent de;
char buf[BSIZE];
char buf[BSIZE];
struct dinode din;
static_assert(sizeof(int) == 4, "Integers must be 4 bytes!");
if(argc < 2){
if(argc < 2) {
fprintf(stderr, "Usage: mkfs fs.img files...\n");
exit(1);
}
@ -85,7 +88,7 @@ main(int argc, char *argv[])
assert((BSIZE % sizeof(struct dinode)) == 0);
assert((BSIZE % sizeof(struct dirent)) == 0);
fsfd = open(argv[1], O_RDWR|O_CREAT|O_TRUNC, 0666);
fsfd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, 0666);
if(fsfd < 0)
die(argv[1]);
@ -99,13 +102,13 @@ main(int argc, char *argv[])
sb.ninodes = xint(NINODES);
sb.nlog = xint(nlog);
sb.logstart = xint(2);
sb.inodestart = xint(2+nlog);
sb.bmapstart = xint(2+nlog+ninodeblocks);
sb.inodestart = xint(2 + nlog);
sb.bmapstart = xint(2 + nlog + ninodeblocks);
printf("nmeta %d (boot, super, log blocks %u inode blocks %u, bitmap blocks %u) blocks %d total %d\n",
nmeta, nlog, ninodeblocks, nbitmap, nblocks, FSSIZE);
printf("nmeta %d (boot, super, log blocks %u inode blocks %u, bitmap blocks %u) blocks %d total %d\n", nmeta, nlog,
ninodeblocks, nbitmap, nblocks, FSSIZE);
freeblock = nmeta; // the first free block that we can allocate
freeblock = nmeta; // the first free block that we can allocate
for(i = 0; i < FSSIZE; i++)
wsect(i, zeroes);
@ -127,14 +130,14 @@ main(int argc, char *argv[])
strcpy(de.name, "..");
iappend(rootino, &de, sizeof(de));
for(i = 2; i < argc; i++){
for(i = 2; i < argc; i++) {
// get rid of "user/"
char *shortname;
if(strncmp(argv[i], "user/", 5) == 0)
shortname = argv[i] + 5;
else
shortname = argv[i];
assert(index(shortname, '/') == 0);
if((fd = open(argv[i], 0)) < 0)
@ -163,7 +166,7 @@ main(int argc, char *argv[])
// fix size of root inode dir
rinode(rootino, &din);
off = xint(din.size);
off = ((off/BSIZE) + 1) * BSIZE;
off = ((off / BSIZE) + 1) * BSIZE;
din.size = xint(off);
winode(rootino, &din);
@ -184,13 +187,13 @@ wsect(uint sec, void *buf)
void
winode(uint inum, struct dinode *ip)
{
char buf[BSIZE];
uint bn;
char buf[BSIZE];
uint bn;
struct dinode *dip;
bn = IBLOCK(inum, sb);
rsect(bn, buf);
dip = ((struct dinode*)buf) + (inum % IPB);
dip = ((struct dinode *)buf) + (inum % IPB);
*dip = *ip;
wsect(bn, buf);
}
@ -198,13 +201,13 @@ winode(uint inum, struct dinode *ip)
void
rinode(uint inum, struct dinode *ip)
{
char buf[BSIZE];
uint bn;
char buf[BSIZE];
uint bn;
struct dinode *dip;
bn = IBLOCK(inum, sb);
rsect(bn, buf);
dip = ((struct dinode*)buf) + (inum % IPB);
dip = ((struct dinode *)buf) + (inum % IPB);
*ip = *dip;
}
@ -220,7 +223,7 @@ rsect(uint sec, void *buf)
uint
ialloc(ushort type)
{
uint inum = freeinode++;
uint inum = freeinode++;
struct dinode din;
bzero(&din, sizeof(din));
@ -234,14 +237,14 @@ ialloc(ushort type)
void
balloc(int used)
{
u8 buf[BSIZE];
u8 buf[BSIZE];
int i;
printf("balloc: first %d blocks have been allocated\n", used);
assert(used < BSIZE*8);
assert(used < BSIZE * 8);
bzero(buf, BSIZE);
for(i = 0; i < used; i++){
buf[i/8] = buf[i/8] | (0x1 << (i%8));
for(i = 0; i < used; i++) {
buf[i / 8] = buf[i / 8] | (0x1 << (i % 8));
}
printf("balloc: write bitmap block at sector %d\n", sb.bmapstart);
wsect(sb.bmapstart, buf);
@ -252,34 +255,34 @@ balloc(int used)
void
iappend(uint inum, void *xp, int n)
{
char *p = (char*)xp;
uint fbn, off, n1;
char *p = (char *)xp;
uint fbn, off, n1;
struct dinode din;
char buf[BSIZE];
uint indirect[NINDIRECT];
uint x;
char buf[BSIZE];
uint indirect[NINDIRECT];
uint x;
rinode(inum, &din);
off = xint(din.size);
// printf("append inum %d at off %d sz %d\n", inum, off, n);
while(n > 0){
while(n > 0) {
fbn = off / BSIZE;
assert(fbn < MAXFILE);
if(fbn < NDIRECT){
if(xint(din.addrs[fbn]) == 0){
if(fbn < NDIRECT) {
if(xint(din.addrs[fbn]) == 0) {
din.addrs[fbn] = xint(freeblock++);
}
x = xint(din.addrs[fbn]);
} else {
if(xint(din.addrs[NDIRECT]) == 0){
if(xint(din.addrs[NDIRECT]) == 0) {
din.addrs[NDIRECT] = xint(freeblock++);
}
rsect(xint(din.addrs[NDIRECT]), (char*)indirect);
if(indirect[fbn - NDIRECT] == 0){
rsect(xint(din.addrs[NDIRECT]), (char *)indirect);
if(indirect[fbn - NDIRECT] == 0) {
indirect[fbn - NDIRECT] = xint(freeblock++);
wsect(xint(din.addrs[NDIRECT]), (char*)indirect);
wsect(xint(din.addrs[NDIRECT]), (char *)indirect);
}
x = xint(indirect[fbn-NDIRECT]);
x = xint(indirect[fbn - NDIRECT]);
}
n1 = min(n, (fbn + 1) * BSIZE - off);
rsect(x, buf);

View file

@ -10,12 +10,12 @@ cat(int fd)
int n;
while((n = read(fd, buf, sizeof(buf))) > 0) {
if (write(1, buf, n) != n) {
if(write(1, buf, n) != n) {
fprintf(2, "cat: write error\n");
exit(1);
}
}
if(n < 0){
if(n < 0) {
fprintf(2, "cat: read error\n");
exit(1);
}
@ -26,13 +26,13 @@ main(int argc, char *argv[])
{
int fd, i;
if(argc <= 1){
if(argc <= 1) {
cat(0);
exit(0);
}
for(i = 1; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
for(i = 1; i < argc; i++) {
if((fd = open(argv[i], 0)) < 0) {
fprintf(2, "cat: cannot open %s\n", argv[i]);
exit(1);
}

View file

@ -7,9 +7,9 @@ main(int argc, char *argv[])
{
int i;
for(i = 1; i < argc; i++){
for(i = 1; i < argc; i++) {
write(1, argv[i], strlen(argv[i]));
if(i + 1 < argc){
if(i + 1 < argc) {
write(1, " ", 1);
} else {
write(1, "\n", 1);

View file

@ -5,7 +5,7 @@
#include "kernel/stat.h"
#include "user/user.h"
#define N 1000
#define N 1000
void
print(const char *s)
@ -20,7 +20,7 @@ forktest(void)
print("fork test\n");
for(n=0; n<N; n++){
for(n = 0; n < N; n++) {
pid = fork();
if(pid < 0)
break;
@ -28,19 +28,19 @@ forktest(void)
exit(0);
}
if(n == N){
if(n == N) {
print("fork claimed to work N times!\n");
exit(1);
}
for(; n > 0; n--){
if(wait(0) < 0){
for(; n > 0; n--) {
if(wait(0) < 0) {
print("wait stopped early\n");
exit(1);
}
}
if(wait(0) != -1){
if(wait(0) != -1) {
print("wait got too many\n");
exit(1);
}

View file

@ -5,28 +5,28 @@
#include "user/user.h"
char buf[1024];
int match(char*, char*);
int match(char *, char *);
void
grep(char *pattern, int fd)
{
int n, m;
int n, m;
char *p, *q;
m = 0;
while((n = read(fd, buf+m, sizeof(buf)-m-1)) > 0){
while((n = read(fd, buf + m, sizeof(buf) - m - 1)) > 0) {
m += n;
buf[m] = '\0';
p = buf;
while((q = strchr(p, '\n')) != 0){
while((q = strchr(p, '\n')) != 0) {
*q = 0;
if(match(pattern, p)){
if(match(pattern, p)) {
*q = '\n';
write(1, p, q+1 - p);
write(1, p, q + 1 - p);
}
p = q+1;
p = q + 1;
}
if(m > 0){
if(m > 0) {
m -= p - buf;
memmove(buf, p, m);
}
@ -36,22 +36,22 @@ grep(char *pattern, int fd)
int
main(int argc, char *argv[])
{
int fd, i;
int fd, i;
char *pattern;
if(argc <= 1){
if(argc <= 1) {
fprintf(2, "usage: grep pattern [file ...]\n");
exit(1);
}
pattern = argv[1];
if(argc <= 2){
if(argc <= 2) {
grep(pattern, 0);
exit(0);
}
for(i = 2; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
for(i = 2; i < argc; i++) {
if((fd = open(argv[i], 0)) < 0) {
printf("grep: cannot open %s\n", argv[i]);
exit(1);
}
@ -65,42 +65,43 @@ main(int argc, char *argv[])
// The Practice of Programming, Chapter 9, or
// https://www.cs.princeton.edu/courses/archive/spr09/cos333/beautiful.html
int matchhere(char*, char*);
int matchstar(int, char*, char*);
int matchhere(char *, char *);
int matchstar(int, char *, char *);
int
match(char *re, char *text)
{
if(re[0] == '^')
return matchhere(re+1, text);
do{ // must look at empty string
return matchhere(re + 1, text);
do { // must look at empty string
if(matchhere(re, text))
return 1;
}while(*text++ != '\0');
} while(*text++ != '\0');
return 0;
}
// matchhere: search for re at beginning of text
int matchhere(char *re, char *text)
int
matchhere(char *re, char *text)
{
if(re[0] == '\0')
return 1;
if(re[1] == '*')
return matchstar(re[0], re+2, text);
return matchstar(re[0], re + 2, text);
if(re[0] == '$' && re[1] == '\0')
return *text == '\0';
if(*text!='\0' && (re[0]=='.' || re[0]==*text))
return matchhere(re+1, text+1);
if(*text != '\0' && (re[0] == '.' || re[0] == *text))
return matchhere(re + 1, text + 1);
return 0;
}
// matchstar: search for c*re at beginning of text
int matchstar(int c, char *re, char *text)
int
matchstar(int c, char *re, char *text)
{
do{ // a * matches zero or more instances
do { // a * matches zero or more instances
if(matchhere(re, text))
return 1;
}while(*text!='\0' && (*text++==c || c=='.'));
} while(*text != '\0' && (*text++ == c || c == '.'));
return 0;
}

View file

@ -16,27 +16,27 @@
int
do_rand(unsigned long *ctx)
{
/*
* Compute x = (7^5 * x) mod (2^31 - 1)
* without overflowing 31 bits:
* (2^31 - 1) = 127773 * (7^5) + 2836
* From "Random number generators: good ones are hard to find",
* Park and Miller, Communications of the ACM, vol. 31, no. 10,
* October 1988, p. 1195.
*/
long hi, lo, x;
/*
* Compute x = (7^5 * x) mod (2^31 - 1)
* without overflowing 31 bits:
* (2^31 - 1) = 127773 * (7^5) + 2836
* From "Random number generators: good ones are hard to find",
* Park and Miller, Communications of the ACM, vol. 31, no. 10,
* October 1988, p. 1195.
*/
long hi, lo, x;
/* Transform to [1, 0x7ffffffe] range. */
x = (*ctx % 0x7ffffffe) + 1;
hi = x / 127773;
lo = x % 127773;
x = 16807 * lo - 2836 * hi;
if (x < 0)
x += 0x7fffffff;
/* Transform to [0, 0x7ffffffd] range. */
x--;
*ctx = x;
return (x);
/* Transform to [1, 0x7ffffffe] range. */
x = (*ctx % 0x7ffffffe) + 1;
hi = x / 127773;
lo = x % 127773;
x = 16807 * lo - 2836 * hi;
if(x < 0)
x += 0x7fffffff;
/* Transform to [0, 0x7ffffffd] range. */
x--;
*ctx = x;
return (x);
}
unsigned long rand_next = 1;
@ -44,124 +44,124 @@ unsigned long rand_next = 1;
int
rand(void)
{
return (do_rand(&rand_next));
return (do_rand(&rand_next));
}
void
go(int which_child)
{
int fd = -1;
int fd = -1;
static char buf[999];
char *break0 = sbrk(0);
u64 iters = 0;
char *break0 = sbrk(0);
u64 iters = 0;
mkdir("grindir");
if(chdir("grindir") != 0){
if(chdir("grindir") != 0) {
printf("grind: chdir grindir failed\n");
exit(1);
}
chdir("/");
while(1){
while(1) {
iters++;
if((iters % 500) == 0)
write(1, which_child?"B":"A", 1);
write(1, which_child ? "B" : "A", 1);
int what = rand() % 23;
if(what == 1){
close(open("grindir/../a", O_CREATE|O_RDWR));
} else if(what == 2){
close(open("grindir/../grindir/../b", O_CREATE|O_RDWR));
} else if(what == 3){
if(what == 1) {
close(open("grindir/../a", O_CREATE | O_RDWR));
} else if(what == 2) {
close(open("grindir/../grindir/../b", O_CREATE | O_RDWR));
} else if(what == 3) {
unlink("grindir/../a");
} else if(what == 4){
if(chdir("grindir") != 0){
} else if(what == 4) {
if(chdir("grindir") != 0) {
printf("grind: chdir grindir failed\n");
exit(1);
}
unlink("../b");
chdir("/");
} else if(what == 5){
} else if(what == 5) {
close(fd);
fd = open("/grindir/../a", O_CREATE|O_RDWR);
} else if(what == 6){
fd = open("/grindir/../a", O_CREATE | O_RDWR);
} else if(what == 6) {
close(fd);
fd = open("/./grindir/./../b", O_CREATE|O_RDWR);
} else if(what == 7){
fd = open("/./grindir/./../b", O_CREATE | O_RDWR);
} else if(what == 7) {
write(fd, buf, sizeof(buf));
} else if(what == 8){
} else if(what == 8) {
read(fd, buf, sizeof(buf));
} else if(what == 9){
} else if(what == 9) {
mkdir("grindir/../a");
close(open("a/../a/./a", O_CREATE|O_RDWR));
close(open("a/../a/./a", O_CREATE | O_RDWR));
unlink("a/a");
} else if(what == 10){
} else if(what == 10) {
mkdir("/../b");
close(open("grindir/../b/b", O_CREATE|O_RDWR));
close(open("grindir/../b/b", O_CREATE | O_RDWR));
unlink("b/b");
} else if(what == 11){
} else if(what == 11) {
unlink("b");
link("../grindir/./../a", "../b");
} else if(what == 12){
} else if(what == 12) {
unlink("../grindir/../a");
link(".././b", "/grindir/../a");
} else if(what == 13){
} else if(what == 13) {
int pid = fork();
if(pid == 0){
if(pid == 0) {
exit(0);
} else if(pid < 0){
} else if(pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 14){
} else if(what == 14) {
int pid = fork();
if(pid == 0){
if(pid == 0) {
fork();
fork();
exit(0);
} else if(pid < 0){
} else if(pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 15){
} else if(what == 15) {
sbrk(6011);
} else if(what == 16){
} else if(what == 16) {
if(sbrk(0) > break0)
sbrk(-(sbrk(0) - break0));
} else if(what == 17){
} else if(what == 17) {
int pid = fork();
if(pid == 0){
close(open("a", O_CREATE|O_RDWR));
if(pid == 0) {
close(open("a", O_CREATE | O_RDWR));
exit(0);
} else if(pid < 0){
} else if(pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
if(chdir("../grindir/..") != 0){
if(chdir("../grindir/..") != 0) {
printf("grind: chdir failed\n");
exit(1);
}
kill(pid);
wait(0);
} else if(what == 18){
} else if(what == 18) {
int pid = fork();
if(pid == 0){
if(pid == 0) {
kill(getpid());
exit(0);
} else if(pid < 0){
} else if(pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 19){
} else if(what == 19) {
int fds[2];
if(pipe(fds) < 0){
if(pipe(fds) < 0) {
printf("grind: pipe failed\n");
exit(1);
}
int pid = fork();
if(pid == 0){
if(pid == 0) {
fork();
fork();
if(write(fds[1], "x", 1) != 1)
@ -170,74 +170,74 @@ go(int which_child)
if(read(fds[0], &c, 1) != 1)
printf("grind: pipe read failed\n");
exit(0);
} else if(pid < 0){
} else if(pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
close(fds[0]);
close(fds[1]);
wait(0);
} else if(what == 20){
} else if(what == 20) {
int pid = fork();
if(pid == 0){
if(pid == 0) {
unlink("a");
mkdir("a");
chdir("a");
unlink("../a");
fd = open("x", O_CREATE|O_RDWR);
fd = open("x", O_CREATE | O_RDWR);
unlink("x");
exit(0);
} else if(pid < 0){
} else if(pid < 0) {
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 21){
} else if(what == 21) {
unlink("c");
// should always succeed. check that there are free i-nodes,
// file descriptors, blocks.
int fd1 = open("c", O_CREATE|O_RDWR);
if(fd1 < 0){
int fd1 = open("c", O_CREATE | O_RDWR);
if(fd1 < 0) {
printf("grind: create c failed\n");
exit(1);
}
if(write(fd1, "x", 1) != 1){
if(write(fd1, "x", 1) != 1) {
printf("grind: write c failed\n");
exit(1);
}
struct stat st;
if(fstat(fd1, &st) != 0){
if(fstat(fd1, &st) != 0) {
printf("grind: fstat failed\n");
exit(1);
}
if(st.size != 1){
if(st.size != 1) {
printf("grind: fstat reports wrong size %d\n", (int)st.size);
exit(1);
}
if(st.ino > 200){
if(st.ino > 200) {
printf("grind: fstat reports crazy i-number %d\n", st.ino);
exit(1);
}
close(fd1);
unlink("c");
} else if(what == 22){
} else if(what == 22) {
// echo hi | cat
int aa[2], bb[2];
if(pipe(aa) < 0){
if(pipe(aa) < 0) {
fprintf(2, "grind: pipe failed\n");
exit(1);
}
if(pipe(bb) < 0){
if(pipe(bb) < 0) {
fprintf(2, "grind: pipe failed\n");
exit(1);
}
int pid1 = fork();
if(pid1 == 0){
if(pid1 == 0) {
close(bb[0]);
close(bb[1]);
close(aa[0]);
close(1);
if(dup(aa[1]) != 1){
if(dup(aa[1]) != 1) {
fprintf(2, "grind: dup failed\n");
exit(1);
}
@ -246,22 +246,22 @@ go(int which_child)
exec("grindir/../echo", args);
fprintf(2, "grind: echo: not found\n");
exit(2);
} else if(pid1 < 0){
} else if(pid1 < 0) {
fprintf(2, "grind: fork failed\n");
exit(3);
}
int pid2 = fork();
if(pid2 == 0){
if(pid2 == 0) {
close(aa[1]);
close(bb[0]);
close(0);
if(dup(aa[0]) != 0){
if(dup(aa[0]) != 0) {
fprintf(2, "grind: dup failed\n");
exit(4);
}
close(aa[0]);
close(1);
if(dup(bb[1]) != 1){
if(dup(bb[1]) != 1) {
fprintf(2, "grind: dup failed\n");
exit(5);
}
@ -270,7 +270,7 @@ go(int which_child)
exec("/cat", args);
fprintf(2, "grind: cat: not found\n");
exit(6);
} else if(pid2 < 0){
} else if(pid2 < 0) {
fprintf(2, "grind: fork failed\n");
exit(7);
}
@ -278,14 +278,14 @@ go(int which_child)
close(aa[1]);
close(bb[1]);
char buf[4] = { 0, 0, 0, 0 };
read(bb[0], buf+0, 1);
read(bb[0], buf+1, 1);
read(bb[0], buf+2, 1);
read(bb[0], buf + 0, 1);
read(bb[0], buf + 1, 1);
read(bb[0], buf + 2, 1);
close(bb[0]);
int st1, st2;
wait(&st1);
wait(&st2);
if(st1 != 0 || st2 != 0 || strcmp(buf, "hi\n") != 0){
if(st1 != 0 || st2 != 0 || strcmp(buf, "hi\n") != 0) {
printf("grind: exec pipeline failed %d %d \"%s\"\n", st1, st2, buf);
exit(1);
}
@ -298,24 +298,24 @@ iter()
{
unlink("a");
unlink("b");
int pid1 = fork();
if(pid1 < 0){
if(pid1 < 0) {
printf("grind: fork failed\n");
exit(1);
}
if(pid1 == 0){
if(pid1 == 0) {
rand_next ^= 31;
go(0);
exit(0);
}
int pid2 = fork();
if(pid2 < 0){
if(pid2 < 0) {
printf("grind: fork failed\n");
exit(1);
}
if(pid2 == 0){
if(pid2 == 0) {
rand_next ^= 7177;
go(1);
exit(0);
@ -323,7 +323,7 @@ iter()
int st1 = -1;
wait(&st1);
if(st1 != 0){
if(st1 != 0) {
kill(pid1);
kill(pid2);
}
@ -336,13 +336,13 @@ iter()
int
main()
{
while(1){
while(1) {
int pid = fork();
if(pid == 0){
if(pid == 0) {
iter();
exit(0);
}
if(pid > 0){
if(pid > 0) {
wait(0);
}
sleep(20);

View file

@ -16,34 +16,34 @@ main(void)
{
int pid, wpid;
if(open("console", O_RDWR) < 0){
if(open("console", O_RDWR) < 0) {
mknod("console", CONSOLE, 0);
open("console", O_RDWR);
}
dup(0); // stdout
dup(0); // stderr
dup(0); // stdout
dup(0); // stderr
for(;;){
for(;;) {
printf("init: starting sh\n");
pid = fork();
if(pid < 0){
if(pid < 0) {
printf("init: fork failed\n");
exit(1);
}
if(pid == 0){
if(pid == 0) {
exec("sh", argv);
printf("init: exec sh failed\n");
exit(1);
}
for(;;){
for(;;) {
// this call to wait() returns if the shell exits,
// or if a parentless process exits.
wpid = wait((int *) 0);
if(wpid == pid){
wpid = wait((int *)0);
if(wpid == pid) {
// the shell exited; restart it.
break;
} else if(wpid < 0){
} else if(wpid < 0) {
printf("init: wait returned an error\n");
exit(1);
} else {

View file

@ -7,11 +7,11 @@ main(int argc, char **argv)
{
int i;
if(argc < 2){
if(argc < 2) {
fprintf(2, "usage: kill pid...\n");
exit(1);
}
for(i=1; i<argc; i++)
for(i = 1; i < argc; i++)
kill(atoi(argv[i]));
exit(0);
}

View file

@ -5,7 +5,7 @@
int
main(int argc, char *argv[])
{
if(argc != 3){
if(argc != 3) {
fprintf(2, "Usage: ln old new\n");
exit(1);
}

View file

@ -3,14 +3,14 @@
#include "user/user.h"
#include "kernel/fs.h"
char*
char *
fmtname(char *path)
{
static char buf[DIRSIZ+1];
char *p;
static char buf[DIRSIZ + 1];
char *p;
// Find first character after last slash.
for(p=path+strlen(path); p >= path && *p != '/'; p--)
for(p = path + strlen(path); p >= path && *p != '/'; p--)
;
p++;
@ -18,49 +18,49 @@ fmtname(char *path)
if(strlen(p) >= DIRSIZ)
return p;
memmove(buf, p, strlen(p));
memset(buf+strlen(p), ' ', DIRSIZ-strlen(p));
memset(buf + strlen(p), ' ', DIRSIZ - strlen(p));
return buf;
}
void
ls(char *path)
{
char buf[512], *p;
int fd;
char buf[512], *p;
int fd;
struct dirent de;
struct stat st;
struct stat st;
if((fd = open(path, 0)) < 0){
if((fd = open(path, 0)) < 0) {
fprintf(2, "ls: cannot open %s\n", path);
return;
}
if(fstat(fd, &st) < 0){
if(fstat(fd, &st) < 0) {
fprintf(2, "ls: cannot stat %s\n", path);
close(fd);
return;
}
switch(st.type){
switch(st.type) {
case T_DEVICE:
case T_FILE:
printf("%s %d %d %l\n", fmtname(path), st.type, st.ino, st.size);
break;
case T_DIR:
if(strlen(path) + 1 + DIRSIZ + 1 > sizeof buf){
if(strlen(path) + 1 + DIRSIZ + 1 > sizeof buf) {
printf("ls: path too long\n");
break;
}
strcpy(buf, path);
p = buf+strlen(buf);
p = buf + strlen(buf);
*p++ = '/';
while(read(fd, &de, sizeof(de)) == sizeof(de)){
while(read(fd, &de, sizeof(de)) == sizeof(de)) {
if(de.inum == 0)
continue;
memmove(p, de.name, DIRSIZ);
p[DIRSIZ] = 0;
if(stat(buf, &st) < 0){
if(stat(buf, &st) < 0) {
printf("ls: cannot stat %s\n", buf);
continue;
}
@ -76,11 +76,11 @@ main(int argc, char *argv[])
{
int i;
if(argc < 2){
if(argc < 2) {
ls(".");
exit(0);
}
for(i=1; i<argc; i++)
for(i = 1; i < argc; i++)
ls(argv[i]);
exit(0);
}

View file

@ -7,13 +7,13 @@ main(int argc, char *argv[])
{
int i;
if(argc < 2){
if(argc < 2) {
fprintf(2, "Usage: mkdir files...\n");
exit(1);
}
for(i = 1; i < argc; i++){
if(mkdir(argv[i]) < 0){
for(i = 1; i < argc; i++) {
if(mkdir(argv[i]) < 0) {
fprintf(2, "mkdir: %s failed to create\n", argv[i]);
break;
}

View file

@ -16,11 +16,11 @@ static void
printint(int fd, int xx, int base, int sgn)
{
char buf[16];
int i, neg;
u32 x;
int i, neg;
u32 x;
neg = 0;
if(sgn && xx < 0){
if(sgn && xx < 0) {
neg = 1;
x = -xx;
} else {
@ -28,9 +28,9 @@ printint(int fd, int xx, int base, int sgn)
}
i = 0;
do{
do {
buf[i++] = digits[x % base];
}while((x /= base) != 0);
} while((x /= base) != 0);
if(neg)
buf[i++] = '-';
@ -39,11 +39,12 @@ printint(int fd, int xx, int base, int sgn)
}
static void
printptr(int fd, u64 x) {
printptr(int fd, u64 x)
{
int i;
putc(fd, '0');
putc(fd, 'x');
for (i = 0; i < (sizeof(u64) * 2); i++, x <<= 4)
for(i = 0; i < (sizeof(u64) * 2); i++, x <<= 4)
putc(fd, digits[x >> (sizeof(u64) * 8 - 4)]);
}
@ -52,19 +53,19 @@ void
vprintf(int fd, const char *fmt, va_list ap)
{
char *s;
int c, i, state;
int c, i, state;
state = 0;
for(i = 0; fmt[i]; i++){
for(i = 0; fmt[i]; i++) {
c = fmt[i] & 0xff;
if(state == 0){
if(c == '%'){
if(state == 0) {
if(c == '%') {
state = '%';
} else {
putc(fd, c);
}
} else if(state == '%'){
if(c == 'd'){
} else if(state == '%') {
if(c == 'd') {
printint(fd, va_arg(ap, int), 10, 1);
} else if(c == 'l') {
printint(fd, va_arg(ap, u64), 10, 0);
@ -72,17 +73,17 @@ vprintf(int fd, const char *fmt, va_list ap)
printint(fd, va_arg(ap, int), 16, 0);
} else if(c == 'p') {
printptr(fd, va_arg(ap, u64));
} else if(c == 's'){
s = va_arg(ap, char*);
} else if(c == 's') {
s = va_arg(ap, char *);
if(s == 0)
s = "(null)";
while(*s != 0){
while(*s != 0) {
putc(fd, *s);
s++;
}
} else if(c == 'c'){
} else if(c == 'c') {
putc(fd, va_arg(ap, u32));
} else if(c == '%'){
} else if(c == '%') {
putc(fd, c);
} else {
// Unknown % sequence. Print it to draw attention.

View file

@ -7,13 +7,13 @@ main(int argc, char *argv[])
{
int i;
if(argc < 2){
if(argc < 2) {
fprintf(2, "Usage: rm files...\n");
exit(1);
}
for(i = 1; i < argc; i++){
if(unlink(argv[i]) < 0){
for(i = 1; i < argc; i++) {
if(unlink(argv[i]) < 0) {
fprintf(2, "rm: %s failed to delete\n", argv[i]);
break;
}

184
user/sh.c
View file

@ -18,62 +18,62 @@ struct cmd {
};
struct execcmd {
int type;
int type;
char *argv[MAXARGS];
char *eargv[MAXARGS];
};
struct redircmd {
int type;
int type;
struct cmd *cmd;
char *file;
char *efile;
int mode;
int fd;
char *file;
char *efile;
int mode;
int fd;
};
struct pipecmd {
int type;
int type;
struct cmd *left;
struct cmd *right;
};
struct listcmd {
int type;
int type;
struct cmd *left;
struct cmd *right;
};
struct backcmd {
int type;
int type;
struct cmd *cmd;
};
int fork1(void); // Fork but panics on failure.
void panic(char*);
struct cmd *parsecmd(char*);
void runcmd(struct cmd*) __attribute__((noreturn));
int fork1(void); // Fork but panics on failure.
void panic(char *);
struct cmd *parsecmd(char *);
void runcmd(struct cmd *) __attribute__((noreturn));
// Execute cmd. Never returns.
void
runcmd(struct cmd *cmd)
{
int p[2];
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
int p[2];
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
struct redircmd *rcmd;
if(cmd == 0)
exit(1);
switch(cmd->type){
switch(cmd->type) {
default:
panic("runcmd");
case EXEC:
ecmd = (struct execcmd*)cmd;
ecmd = (struct execcmd *)cmd;
if(ecmd->argv[0] == 0)
exit(1);
exec(ecmd->argv[0], ecmd->argv);
@ -81,9 +81,9 @@ runcmd(struct cmd *cmd)
break;
case REDIR:
rcmd = (struct redircmd*)cmd;
rcmd = (struct redircmd *)cmd;
close(rcmd->fd);
if(open(rcmd->file, rcmd->mode) < 0){
if(open(rcmd->file, rcmd->mode) < 0) {
fprintf(2, "open %s failed\n", rcmd->file);
exit(1);
}
@ -91,7 +91,7 @@ runcmd(struct cmd *cmd)
break;
case LIST:
lcmd = (struct listcmd*)cmd;
lcmd = (struct listcmd *)cmd;
if(fork1() == 0)
runcmd(lcmd->left);
wait(0);
@ -99,17 +99,17 @@ runcmd(struct cmd *cmd)
break;
case PIPE:
pcmd = (struct pipecmd*)cmd;
pcmd = (struct pipecmd *)cmd;
if(pipe(p) < 0)
panic("pipe");
if(fork1() == 0){
if(fork1() == 0) {
close(1);
dup(p[1]);
close(p[0]);
close(p[1]);
runcmd(pcmd->left);
}
if(fork1() == 0){
if(fork1() == 0) {
close(0);
dup(p[0]);
close(p[0]);
@ -123,7 +123,7 @@ runcmd(struct cmd *cmd)
break;
case BACK:
bcmd = (struct backcmd*)cmd;
bcmd = (struct backcmd *)cmd;
if(fork1() == 0)
runcmd(bcmd->cmd);
break;
@ -146,23 +146,23 @@ int
main(void)
{
static char buf[100];
int fd;
int fd;
// Ensure that three file descriptors are open.
while((fd = open("console", O_RDWR)) >= 0){
if(fd >= 3){
while((fd = open("console", O_RDWR)) >= 0) {
if(fd >= 3) {
close(fd);
break;
}
}
// Read and run input commands.
while(getcmd(buf, sizeof(buf)) >= 0){
if(buf[0] == 'c' && buf[1] == 'd' && buf[2] == ' '){
while(getcmd(buf, sizeof(buf)) >= 0) {
if(buf[0] == 'c' && buf[1] == 'd' && buf[2] == ' ') {
// Chdir must be called by the parent, not the child.
buf[strlen(buf)-1] = 0; // chop \n
if(chdir(buf+3) < 0)
fprintf(2, "cannot cd %s\n", buf+3);
buf[strlen(buf) - 1] = 0; // chop \n
if(chdir(buf + 3) < 0)
fprintf(2, "cannot cd %s\n", buf + 3);
continue;
}
if(fork1() == 0)
@ -190,10 +190,10 @@ fork1(void)
return pid;
}
//PAGEBREAK!
// Constructors
// PAGEBREAK!
// Constructors
struct cmd*
struct cmd *
execcmd(void)
{
struct execcmd *cmd;
@ -201,10 +201,10 @@ execcmd(void)
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = EXEC;
return (struct cmd*)cmd;
return (struct cmd *)cmd;
}
struct cmd*
struct cmd *
redircmd(struct cmd *subcmd, char *file, char *efile, int mode, int fd)
{
struct redircmd *cmd;
@ -217,10 +217,10 @@ redircmd(struct cmd *subcmd, char *file, char *efile, int mode, int fd)
cmd->efile = efile;
cmd->mode = mode;
cmd->fd = fd;
return (struct cmd*)cmd;
return (struct cmd *)cmd;
}
struct cmd*
struct cmd *
pipecmd(struct cmd *left, struct cmd *right)
{
struct pipecmd *cmd;
@ -230,10 +230,10 @@ pipecmd(struct cmd *left, struct cmd *right)
cmd->type = PIPE;
cmd->left = left;
cmd->right = right;
return (struct cmd*)cmd;
return (struct cmd *)cmd;
}
struct cmd*
struct cmd *
listcmd(struct cmd *left, struct cmd *right)
{
struct listcmd *cmd;
@ -243,10 +243,10 @@ listcmd(struct cmd *left, struct cmd *right)
cmd->type = LIST;
cmd->left = left;
cmd->right = right;
return (struct cmd*)cmd;
return (struct cmd *)cmd;
}
struct cmd*
struct cmd *
backcmd(struct cmd *subcmd)
{
struct backcmd *cmd;
@ -255,10 +255,10 @@ backcmd(struct cmd *subcmd)
memset(cmd, 0, sizeof(*cmd));
cmd->type = BACK;
cmd->cmd = subcmd;
return (struct cmd*)cmd;
return (struct cmd *)cmd;
}
//PAGEBREAK!
// Parsing
// PAGEBREAK!
// Parsing
char whitespace[] = " \t\r\n\v";
char symbols[] = "<|>&;()";
@ -267,7 +267,7 @@ int
gettoken(char **ps, char *es, char **q, char **eq)
{
char *s;
int ret;
int ret;
s = *ps;
while(s < es && strchr(whitespace, *s))
@ -275,7 +275,7 @@ gettoken(char **ps, char *es, char **q, char **eq)
if(q)
*q = s;
ret = *s;
switch(*s){
switch(*s) {
case 0:
break;
case '|':
@ -288,7 +288,7 @@ gettoken(char **ps, char *es, char **q, char **eq)
break;
case '>':
s++;
if(*s == '>'){
if(*s == '>') {
ret = '+';
s++;
}
@ -320,21 +320,21 @@ peek(char **ps, char *es, char *toks)
return *s && strchr(toks, *s);
}
struct cmd *parseline(char**, char*);
struct cmd *parsepipe(char**, char*);
struct cmd *parseexec(char**, char*);
struct cmd *nulterminate(struct cmd*);
struct cmd *parseline(char **, char *);
struct cmd *parsepipe(char **, char *);
struct cmd *parseexec(char **, char *);
struct cmd *nulterminate(struct cmd *);
struct cmd*
struct cmd *
parsecmd(char *s)
{
char *es;
char *es;
struct cmd *cmd;
es = s + strlen(s);
cmd = parseline(&s, es);
peek(&s, es, "");
if(s != es){
if(s != es) {
fprintf(2, "leftovers: %s\n", s);
panic("syntax");
}
@ -342,62 +342,62 @@ parsecmd(char *s)
return cmd;
}
struct cmd*
struct cmd *
parseline(char **ps, char *es)
{
struct cmd *cmd;
cmd = parsepipe(ps, es);
while(peek(ps, es, "&")){
while(peek(ps, es, "&")) {
gettoken(ps, es, 0, 0);
cmd = backcmd(cmd);
}
if(peek(ps, es, ";")){
if(peek(ps, es, ";")) {
gettoken(ps, es, 0, 0);
cmd = listcmd(cmd, parseline(ps, es));
}
return cmd;
}
struct cmd*
struct cmd *
parsepipe(char **ps, char *es)
{
struct cmd *cmd;
cmd = parseexec(ps, es);
if(peek(ps, es, "|")){
if(peek(ps, es, "|")) {
gettoken(ps, es, 0, 0);
cmd = pipecmd(cmd, parsepipe(ps, es));
}
return cmd;
}
struct cmd*
struct cmd *
parseredirs(struct cmd *cmd, char **ps, char *es)
{
int tok;
int tok;
char *q, *eq;
while(peek(ps, es, "<>")){
while(peek(ps, es, "<>")) {
tok = gettoken(ps, es, 0, 0);
if(gettoken(ps, es, &q, &eq) != 'a')
panic("missing file for redirection");
switch(tok){
switch(tok) {
case '<':
cmd = redircmd(cmd, q, eq, O_RDONLY, 0);
break;
case '>':
cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE|O_TRUNC, 1);
cmd = redircmd(cmd, q, eq, O_WRONLY | O_CREATE | O_TRUNC, 1);
break;
case '+': // >>
cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE, 1);
case '+': // >>
cmd = redircmd(cmd, q, eq, O_WRONLY | O_CREATE, 1);
break;
}
}
return cmd;
}
struct cmd*
struct cmd *
parseblock(char **ps, char *es)
{
struct cmd *cmd;
@ -413,24 +413,24 @@ parseblock(char **ps, char *es)
return cmd;
}
struct cmd*
struct cmd *
parseexec(char **ps, char *es)
{
char *q, *eq;
int tok, argc;
char *q, *eq;
int tok, argc;
struct execcmd *cmd;
struct cmd *ret;
struct cmd *ret;
if(peek(ps, es, "("))
return parseblock(ps, es);
ret = execcmd();
cmd = (struct execcmd*)ret;
cmd = (struct execcmd *)ret;
argc = 0;
ret = parseredirs(ret, ps, es);
while(!peek(ps, es, "|)&;")){
if((tok=gettoken(ps, es, &q, &eq)) == 0)
while(!peek(ps, es, "|)&;")) {
if((tok = gettoken(ps, es, &q, &eq)) == 0)
break;
if(tok != 'a')
panic("syntax");
@ -447,46 +447,46 @@ parseexec(char **ps, char *es)
}
// NUL-terminate all the counted strings.
struct cmd*
struct cmd *
nulterminate(struct cmd *cmd)
{
int i;
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
int i;
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
struct redircmd *rcmd;
if(cmd == 0)
return 0;
switch(cmd->type){
switch(cmd->type) {
case EXEC:
ecmd = (struct execcmd*)cmd;
for(i=0; ecmd->argv[i]; i++)
ecmd = (struct execcmd *)cmd;
for(i = 0; ecmd->argv[i]; i++)
*ecmd->eargv[i] = 0;
break;
case REDIR:
rcmd = (struct redircmd*)cmd;
rcmd = (struct redircmd *)cmd;
nulterminate(rcmd->cmd);
*rcmd->efile = 0;
break;
case PIPE:
pcmd = (struct pipecmd*)cmd;
pcmd = (struct pipecmd *)cmd;
nulterminate(pcmd->left);
nulterminate(pcmd->right);
break;
case LIST:
lcmd = (struct listcmd*)cmd;
lcmd = (struct listcmd *)cmd;
nulterminate(lcmd->left);
nulterminate(lcmd->right);
break;
case BACK:
bcmd = (struct backcmd*)cmd;
bcmd = (struct backcmd *)cmd;
nulterminate(bcmd->cmd);
break;
}

View file

@ -16,7 +16,7 @@
int
main(int argc, char *argv[])
{
int fd, i;
int fd, i;
char path[] = "stressfs0";
char data[512];
@ -32,14 +32,14 @@ main(int argc, char *argv[])
path[8] += i;
fd = open(path, O_CREATE | O_RDWR);
for(i = 0; i < 20; i++)
// printf(fd, "%d\n", i);
// printf(fd, "%d\n", i);
write(fd, data, sizeof(data));
close(fd);
printf("read\n");
fd = open(path, O_RDONLY);
for (i = 0; i < 20; i++)
for(i = 0; i < 20; i++)
read(fd, data, sizeof(data));
close(fd);

View file

@ -14,7 +14,7 @@ _main()
exit(0);
}
char*
char *
strcpy(char *s, const char *t)
{
char *os;
@ -43,33 +43,33 @@ strlen(const char *s)
return n;
}
void*
void *
memset(void *dst, int c, u32 n)
{
char *cdst = (char *) dst;
int i;
for(i = 0; i < n; i++){
char *cdst = (char *)dst;
int i;
for(i = 0; i < n; i++) {
cdst[i] = c;
}
return dst;
}
char*
char *
strchr(const char *s, char c)
{
for(; *s; s++)
if(*s == c)
return (char*)s;
return (char *)s;
return 0;
}
char*
char *
gets(char *buf, int max)
{
int i, cc;
int i, cc;
char c;
for(i=0; i+1 < max; ){
for(i = 0; i + 1 < max;) {
cc = read(0, &c, 1);
if(cc < 1)
break;
@ -102,19 +102,19 @@ atoi(const char *s)
n = 0;
while('0' <= *s && *s <= '9')
n = n*10 + *s++ - '0';
n = n * 10 + *s++ - '0';
return n;
}
void*
void *
memmove(void *vdst, const void *vsrc, int n)
{
char *dst;
char *dst;
const char *src;
dst = vdst;
src = vsrc;
if (src > dst) {
if(src > dst) {
while(n-- > 0)
*dst++ = *src++;
} else {
@ -130,8 +130,8 @@ int
memcmp(const void *s1, const void *s2, u32 n)
{
const char *p1 = s1, *p2 = s2;
while (n-- > 0) {
if (*p1 != *p2) {
while(n-- > 0) {
if(*p1 != *p2) {
return *p1 - *p2;
}
p1++;

View file

@ -11,14 +11,14 @@ typedef long Align;
union header {
struct {
union header *ptr;
u32 size;
u32 size;
} s;
Align x;
};
typedef union header Header;
static Header base;
static Header base;
static Header *freep;
void
@ -26,16 +26,16 @@ free(void *ap)
{
Header *bp, *p;
bp = (Header*)ap - 1;
bp = (Header *)ap - 1;
for(p = freep; !(bp > p && bp < p->s.ptr); p = p->s.ptr)
if(p >= p->s.ptr && (bp > p || bp < p->s.ptr))
break;
if(bp + bp->s.size == p->s.ptr){
if(bp + bp->s.size == p->s.ptr) {
bp->s.size += p->s.ptr->s.size;
bp->s.ptr = p->s.ptr->s.ptr;
} else
bp->s.ptr = p->s.ptr;
if(p + p->s.size == bp){
if(p + p->s.size == bp) {
p->s.size += bp->s.size;
p->s.ptr = bp->s.ptr;
} else
@ -43,36 +43,36 @@ free(void *ap)
freep = p;
}
static Header*
static Header *
morecore(u32 nu)
{
char *p;
char *p;
Header *hp;
if(nu < 4096)
nu = 4096;
p = sbrk(nu * sizeof(Header));
if(p == (char*)-1)
if(p == (char *)-1)
return 0;
hp = (Header*)p;
hp = (Header *)p;
hp->s.size = nu;
free((void*)(hp + 1));
free((void *)(hp + 1));
return freep;
}
void*
void *
malloc(u32 nbytes)
{
Header *p, *prevp;
u32 nunits;
u32 nunits;
nunits = (nbytes + sizeof(Header) - 1)/sizeof(Header) + 1;
if((prevp = freep) == 0){
nunits = (nbytes + sizeof(Header) - 1) / sizeof(Header) + 1;
if((prevp = freep) == 0) {
base.s.ptr = freep = prevp = &base;
base.s.size = 0;
}
for(p = prevp->s.ptr; ; prevp = p, p = p->s.ptr){
if(p->s.size >= nunits){
for(p = prevp->s.ptr;; prevp = p, p = p->s.ptr) {
if(p->s.size >= nunits) {
if(p->s.size == nunits)
prevp->s.ptr = p->s.ptr;
else {
@ -81,7 +81,7 @@ malloc(u32 nbytes)
p->s.size = nunits;
}
freep = prevp;
return (void*)(p + 1);
return (void *)(p + 1);
}
if(p == freep)
if((p = morecore(nunits)) == 0)

View file

@ -1,41 +1,41 @@
struct stat;
// system calls
int fork(void);
int exit(int) __attribute__((noreturn));
int wait(int*);
int pipe(int*);
int write(int, const void*, int);
int read(int, void*, int);
int close(int);
int kill(int);
int exec(const char*, char**);
int open(const char*, int);
int mknod(const char*, short, short);
int unlink(const char*);
int fstat(int fd, struct stat*);
int link(const char*, const char*);
int mkdir(const char*);
int chdir(const char*);
int dup(int);
int getpid(void);
char* sbrk(int);
int sleep(int);
int uptime(void);
int fork(void);
int exit(int) __attribute__((noreturn));
int wait(int *);
int pipe(int *);
int write(int, const void *, int);
int read(int, void *, int);
int close(int);
int kill(int);
int exec(const char *, char **);
int open(const char *, int);
int mknod(const char *, short, short);
int unlink(const char *);
int fstat(int fd, struct stat *);
int link(const char *, const char *);
int mkdir(const char *);
int chdir(const char *);
int dup(int);
int getpid(void);
char *sbrk(int);
int sleep(int);
int uptime(void);
// ulib.c
int stat(const char*, struct stat*);
char* strcpy(char*, const char*);
void *memmove(void*, const void*, int);
char* strchr(const char*, char c);
int strcmp(const char*, const char*);
void fprintf(int, const char*, ...);
void printf(const char*, ...);
char* gets(char*, int max);
u32 strlen(const char*);
void* memset(void*, int, u32);
void* malloc(u32);
void free(void*);
int atoi(const char*);
int memcmp(const void *, const void *, u32);
int stat(const char *, struct stat *);
char *strcpy(char *, const char *);
void *memmove(void *, const void *, int);
char *strchr(const char *, char c);
int strcmp(const char *, const char *);
void fprintf(int, const char *, ...);
void printf(const char *, ...);
char *gets(char *, int max);
u32 strlen(const char *);
void *memset(void *, int, u32);
void *malloc(u32);
void free(void *);
int atoi(const char *);
int memcmp(const void *, const void *, u32);
void *memcpy(void *, const void *, u32);

File diff suppressed because it is too large Load diff

View file

@ -12,20 +12,20 @@ wc(int fd, char *name)
l = w = c = 0;
inword = 0;
while((n = read(fd, buf, sizeof(buf))) > 0){
for(i=0; i<n; i++){
while((n = read(fd, buf, sizeof(buf))) > 0) {
for(i = 0; i < n; i++) {
c++;
if(buf[i] == '\n')
l++;
if(strchr(" \r\t\n\v", buf[i]))
inword = 0;
else if(!inword){
else if(!inword) {
w++;
inword = 1;
}
}
}
if(n < 0){
if(n < 0) {
printf("wc: read error\n");
exit(1);
}
@ -37,13 +37,13 @@ main(int argc, char *argv[])
{
int fd, i;
if(argc <= 1){
if(argc <= 1) {
wc(0, "");
exit(0);
}
for(i = 1; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
for(i = 1; i < argc; i++) {
if((fd = open(argv[i], 0)) < 0) {
printf("wc: cannot open %s\n", argv[i]);
exit(1);
}

View file

@ -9,6 +9,6 @@ int
main(void)
{
if(fork() > 0)
sleep(5); // Let child exit before parent.
sleep(5); // Let child exit before parent.
exit(0);
}