#ifndef __ASSEMBLER__ // which hart (core) is this? static inline uint64 r_mhartid() { uint64 x; asm volatile("csrr %0, mhartid" : "=r" (x) ); return x; } // Machine Status Register, mstatus #define MSTATUS_MPP_MASK (3L << 11) // previous mode. #define MSTATUS_MPP_M (3L << 11) #define MSTATUS_MPP_S (1L << 11) #define MSTATUS_MPP_U (0L << 11) #define MSTATUS_MIE (1L << 3) // machine-mode interrupt enable. static inline uint64 r_mstatus() { uint64 x; asm volatile("csrr %0, mstatus" : "=r" (x) ); return x; } static inline void w_mstatus(uint64 x) { asm volatile("csrw mstatus, %0" : : "r" (x)); } // machine exception program counter, holds the // instruction address to which a return from // exception will go. static inline void w_mepc(uint64 x) { asm volatile("csrw mepc, %0" : : "r" (x)); } // Supervisor Status Register, sstatus #define SSTATUS_SPP (1L << 8) // Previous mode, 1=Supervisor, 0=User #define SSTATUS_SPIE (1L << 5) // Supervisor Previous Interrupt Enable #define SSTATUS_UPIE (1L << 4) // User Previous Interrupt Enable #define SSTATUS_SIE (1L << 1) // Supervisor Interrupt Enable #define SSTATUS_UIE (1L << 0) // User Interrupt Enable static inline uint64 r_sstatus() { uint64 x; asm volatile("csrr %0, sstatus" : "=r" (x) ); return x; } static inline void w_sstatus(uint64 x) { asm volatile("csrw sstatus, %0" : : "r" (x)); } // Supervisor Interrupt Pending static inline uint64 r_sip() { uint64 x; asm volatile("csrr %0, sip" : "=r" (x) ); return x; } static inline void w_sip(uint64 x) { asm volatile("csrw sip, %0" : : "r" (x)); } // Supervisor Interrupt Enable #define SIE_SEIE (1L << 9) // external #define SIE_STIE (1L << 5) // timer #define SIE_SSIE (1L << 1) // software static inline uint64 r_sie() { uint64 x; asm volatile("csrr %0, sie" : "=r" (x) ); return x; } static inline void w_sie(uint64 x) { asm volatile("csrw sie, %0" : : "r" (x)); } // Machine-mode Interrupt Enable #define MIE_MEIE (1L << 11) // external #define MIE_MTIE (1L << 7) // timer #define MIE_MSIE (1L << 3) // software static inline uint64 r_mie() { uint64 x; asm volatile("csrr %0, mie" : "=r" (x) ); return x; } static inline void w_mie(uint64 x) { asm volatile("csrw mie, %0" : : "r" (x)); } // supervisor exception program counter, holds the // instruction address to which a return from // exception will go. static inline void w_sepc(uint64 x) { asm volatile("csrw sepc, %0" : : "r" (x)); } static inline uint64 r_sepc() { uint64 x; asm volatile("csrr %0, sepc" : "=r" (x) ); return x; } // Machine Exception Delegation static inline uint64 r_medeleg() { uint64 x; asm volatile("csrr %0, medeleg" : "=r" (x) ); return x; } static inline void w_medeleg(uint64 x) { asm volatile("csrw medeleg, %0" : : "r" (x)); } // Machine Interrupt Delegation static inline uint64 r_mideleg() { uint64 x; asm volatile("csrr %0, mideleg" : "=r" (x) ); return x; } static inline void w_mideleg(uint64 x) { asm volatile("csrw mideleg, %0" : : "r" (x)); } // Supervisor Trap-Vector Base Address // low two bits are mode. static inline void w_stvec(uint64 x) { asm volatile("csrw stvec, %0" : : "r" (x)); } static inline uint64 r_stvec() { uint64 x; asm volatile("csrr %0, stvec" : "=r" (x) ); return x; } // Machine-mode interrupt vector static inline void w_mtvec(uint64 x) { asm volatile("csrw mtvec, %0" : : "r" (x)); } // Physical Memory Protection static inline void w_pmpcfg0(uint64 x) { asm volatile("csrw pmpcfg0, %0" : : "r" (x)); } static inline void w_pmpaddr0(uint64 x) { asm volatile("csrw pmpaddr0, %0" : : "r" (x)); } // use riscv's sv39 page table scheme. #define SATP_SV39 (8L << 60) #define MAKE_SATP(pagetable) (SATP_SV39 | (((uint64)pagetable) >> 12)) // supervisor address translation and protection; // holds the address of the page table. static inline void w_satp(uint64 x) { asm volatile("csrw satp, %0" : : "r" (x)); } static inline uint64 r_satp() { uint64 x; asm volatile("csrr %0, satp" : "=r" (x) ); return x; } // Supervisor Scratch register, for early trap handler in trampoline.S. static inline void w_sscratch(uint64 x) { asm volatile("csrw sscratch, %0" : : "r" (x)); } static inline void w_mscratch(uint64 x) { asm volatile("csrw mscratch, %0" : : "r" (x)); } // Supervisor Trap Cause static inline uint64 r_scause() { uint64 x; asm volatile("csrr %0, scause" : "=r" (x) ); return x; } // Supervisor Trap Value static inline uint64 r_stval() { uint64 x; asm volatile("csrr %0, stval" : "=r" (x) ); return x; } // Machine-mode Counter-Enable static inline void w_mcounteren(uint64 x) { asm volatile("csrw mcounteren, %0" : : "r" (x)); } static inline uint64 r_mcounteren() { uint64 x; asm volatile("csrr %0, mcounteren" : "=r" (x) ); return x; } // machine-mode cycle counter static inline uint64 r_time() { uint64 x; asm volatile("csrr %0, time" : "=r" (x) ); return x; } // enable device interrupts static inline void intr_on() { w_sstatus(r_sstatus() | SSTATUS_SIE); } // disable device interrupts static inline void intr_off() { w_sstatus(r_sstatus() & ~SSTATUS_SIE); } // are device interrupts enabled? static inline int intr_get() { uint64 x = r_sstatus(); return (x & SSTATUS_SIE) != 0; } static inline uint64 r_sp() { uint64 x; asm volatile("mv %0, sp" : "=r" (x) ); return x; } // read and write tp, the thread pointer, which holds // this core's hartid (core number), the index into cpus[]. static inline uint64 r_tp() { uint64 x; asm volatile("mv %0, tp" : "=r" (x) ); return x; } static inline void w_tp(uint64 x) { asm volatile("mv tp, %0" : : "r" (x)); } static inline uint64 r_ra() { uint64 x; asm volatile("mv %0, ra" : "=r" (x) ); return x; } // flush the TLB. static inline void sfence_vma() { // the zero, zero means flush all TLB entries. asm volatile("sfence.vma zero, zero"); } typedef uint64 pte_t; typedef uint64 *pagetable_t; // 512 PTEs #endif // __ASSEMBLER__ #define PGSIZE 4096 // bytes per page #define PGSHIFT 12 // bits of offset within a page #define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1)) #define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1)) #define PTE_V (1L << 0) // valid #define PTE_R (1L << 1) #define PTE_W (1L << 2) #define PTE_X (1L << 3) #define PTE_U (1L << 4) // 1 -> user can access // shift a physical address to the right place for a PTE. #define PA2PTE(pa) ((((uint64)pa) >> 12) << 10) #define PTE2PA(pte) (((pte) >> 10) << 12) #define PTE_FLAGS(pte) ((pte) & 0x3FF) // extract the three 9-bit page table indices from a virtual address. #define PXMASK 0x1FF // 9 bits #define PXSHIFT(level) (PGSHIFT+(9*(level))) #define PX(level, va) ((((uint64) (va)) >> PXSHIFT(level)) & PXMASK) // one beyond the highest possible virtual address. // MAXVA is actually one bit less than the max allowed by // Sv39, to avoid having to sign-extend virtual addresses // that have the high bit set. #define MAXVA (1L << (9 + 9 + 9 + 12 - 1))