static __inline void breakpoint(void) __attribute__((always_inline)); static __inline uint8_t inb(int port) __attribute__((always_inline)); static __inline void insb(int port, void *addr, int cnt) __attribute__((always_inline)); static __inline uint16_t inw(int port) __attribute__((always_inline)); static __inline void insw(int port, void *addr, int cnt) __attribute__((always_inline)); static __inline uint32_t inl(int port) __attribute__((always_inline)); static __inline void insl(int port, void *addr, int cnt) __attribute__((always_inline)); static __inline void outb(int port, uint8_t data) __attribute__((always_inline)); static __inline void outsb(int port, const void *addr, int cnt) __attribute__((always_inline)); static __inline void outw(int port, uint16_t data) __attribute__((always_inline)); static __inline void outsw(int port, const void *addr, int cnt) __attribute__((always_inline)); static __inline void outsl(int port, const void *addr, int cnt) __attribute__((always_inline)); static __inline void outl(int port, uint32_t data) __attribute__((always_inline)); static __inline void invlpg(void *addr) __attribute__((always_inline)); static __inline void lidt(void *p) __attribute__((always_inline)); static __inline void lldt(uint16_t sel) __attribute__((always_inline)); static __inline void ltr(uint16_t sel) __attribute__((always_inline)); static __inline void lcr0(uint32_t val) __attribute__((always_inline)); static __inline uint32_t rcr0(void) __attribute__((always_inline)); static __inline uint32_t rcr2(void) __attribute__((always_inline)); static __inline void lcr3(uint32_t val) __attribute__((always_inline)); static __inline uint32_t rcr3(void) __attribute__((always_inline)); static __inline void lcr4(uint32_t val) __attribute__((always_inline)); static __inline uint32_t rcr4(void) __attribute__((always_inline)); static __inline void tlbflush(void) __attribute__((always_inline)); static __inline uint32_t read_eflags(void) __attribute__((always_inline)); static __inline void write_eflags(uint32_t eflags) __attribute__((always_inline)); static __inline uint32_t read_ebp(void) __attribute__((always_inline)); static __inline uint32_t read_esp(void) __attribute__((always_inline)); static __inline void cpuid(uint32_t info, uint32_t *eaxp, uint32_t *ebxp, uint32_t *ecxp, uint32_t *edxp); static __inline uint64_t read_tsc(void) __attribute__((always_inline)); static __inline void breakpoint(void) { __asm __volatile("int3"); } static __inline uint8_t inb(int port) { uint8_t data; __asm __volatile("inb %w1,%0" : "=a" (data) : "d" (port)); return data; } static __inline void insb(int port, void *addr, int cnt) { __asm __volatile("cld\n\trepne\n\tinsb" : "=D" (addr), "=c" (cnt) : "d" (port), "0" (addr), "1" (cnt) : "memory", "cc"); } static __inline uint16_t inw(int port) { uint16_t data; __asm __volatile("inw %w1,%0" : "=a" (data) : "d" (port)); return data; } static __inline void insw(int port, void *addr, int cnt) { __asm __volatile("cld\n\trepne\n\tinsw" : "=D" (addr), "=c" (cnt) : "d" (port), "0" (addr), "1" (cnt) : "memory", "cc"); } static __inline uint32_t inl(int port) { uint32_t data; __asm __volatile("inl %w1,%0" : "=a" (data) : "d" (port)); return data; } static __inline void insl(int port, void *addr, int cnt) { __asm __volatile("cld\n\trepne\n\tinsl" : "=D" (addr), "=c" (cnt) : "d" (port), "0" (addr), "1" (cnt) : "memory", "cc"); } static __inline void outb(int port, uint8_t data) { __asm __volatile("outb %0,%w1" : : "a" (data), "d" (port)); } static __inline void outsb(int port, const void *addr, int cnt) { __asm __volatile("cld\n\trepne\n\toutsb" : "=S" (addr), "=c" (cnt) : "d" (port), "0" (addr), "1" (cnt) : "cc"); } static __inline void outw(int port, uint16_t data) { __asm __volatile("outw %0,%w1" : : "a" (data), "d" (port)); } static __inline void outsw(int port, const void *addr, int cnt) { __asm __volatile("cld\n\trepne\n\toutsw" : "=S" (addr), "=c" (cnt) : "d" (port), "0" (addr), "1" (cnt) : "cc"); } static __inline void outsl(int port, const void *addr, int cnt) { __asm __volatile("cld\n\trepne\n\toutsl" : "=S" (addr), "=c" (cnt) : "d" (port), "0" (addr), "1" (cnt) : "cc"); } static __inline void outl(int port, uint32_t data) { __asm __volatile("outl %0,%w1" : : "a" (data), "d" (port)); } static __inline void invlpg(void *addr) { __asm __volatile("invlpg (%0)" : : "r" (addr) : "memory"); } static __inline void lidt(void *p) { __asm __volatile("lidt (%0)" : : "r" (p)); } static __inline void lldt(uint16_t sel) { __asm __volatile("lldt %0" : : "r" (sel)); } static __inline void ltr(uint16_t sel) { __asm __volatile("ltr %0" : : "r" (sel)); } static __inline void lcr0(uint32_t val) { __asm __volatile("movl %0,%%cr0" : : "r" (val)); } static __inline uint32_t rcr0(void) { uint32_t val; __asm __volatile("movl %%cr0,%0" : "=r" (val)); return val; } static __inline uint32_t rcr2(void) { uint32_t val; __asm __volatile("movl %%cr2,%0" : "=r" (val)); return val; } static __inline void lcr3(uint32_t val) { __asm __volatile("movl %0,%%cr3" : : "r" (val)); } static __inline uint32_t rcr3(void) { uint32_t val; __asm __volatile("movl %%cr3,%0" : "=r" (val)); return val; } static __inline void lcr4(uint32_t val) { __asm __volatile("movl %0,%%cr4" : : "r" (val)); } static __inline uint32_t rcr4(void) { uint32_t cr4; __asm __volatile("movl %%cr4,%0" : "=r" (cr4)); return cr4; } static __inline void tlbflush(void) { uint32_t cr3; __asm __volatile("movl %%cr3,%0" : "=r" (cr3)); __asm __volatile("movl %0,%%cr3" : : "r" (cr3)); } static __inline uint32_t read_eflags(void) { uint32_t eflags; __asm __volatile("pushfl; popl %0" : "=r" (eflags)); return eflags; } static __inline void write_eflags(uint32_t eflags) { __asm __volatile("pushl %0; popfl" : : "r" (eflags)); } static __inline uint32_t read_ebp(void) { uint32_t ebp; __asm __volatile("movl %%ebp,%0" : "=r" (ebp)); return ebp; } static __inline uint32_t read_esp(void) { uint32_t esp; __asm __volatile("movl %%esp,%0" : "=r" (esp)); return esp; } static __inline uint32_t read_esi(void) { uint32_t esi; __asm __volatile("movl %%esi,%0" : "=r" (esi)); return esi; } static __inline uint32_t read_edi(void) { uint32_t edi; __asm __volatile("movl %%edi,%0" : "=r" (edi)); return edi; } static __inline uint32_t read_ebx(void) { uint32_t ebx; __asm __volatile("movl %%ebx,%0" : "=r" (ebx)); return ebx; } static __inline void cpuid(uint32_t info, uint32_t *eaxp, uint32_t *ebxp, uint32_t *ecxp, uint32_t *edxp) { uint32_t eax, ebx, ecx, edx; asm volatile("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (info)); if (eaxp) *eaxp = eax; if (ebxp) *ebxp = ebx; if (ecxp) *ecxp = ecx; if (edxp) *edxp = edx; } static __inline uint32_t cmpxchg(uint32_t oldval, uint32_t newval, volatile uint32_t* lock_addr) { uint32_t result; __asm__ __volatile__( "lock; cmpxchgl %2, %0" :"+m" (*lock_addr), "=a" (result) : "r"(newval), "1"(oldval) : "cc" ); return result; } static __inline uint64_t read_tsc(void) { uint64_t tsc; __asm __volatile("rdtsc" : "=A" (tsc)); return tsc; } // disable interrupts static __inline void cli(void) { __asm __volatile("cli"); } // enable interrupts static __inline void sti(void) { __asm __volatile("sti"); } struct PushRegs { /* registers as pushed by pusha */ uint32_t reg_edi; uint32_t reg_esi; uint32_t reg_ebp; uint32_t reg_oesp; /* Useless */ uint32_t reg_ebx; uint32_t reg_edx; uint32_t reg_ecx; uint32_t reg_eax; }; struct Trapframe { struct PushRegs tf_regs; uint16_t tf_es; uint16_t tf_padding1; uint16_t tf_ds; uint16_t tf_padding2; uint32_t tf_trapno; /* below here defined by x86 hardware */ uint32_t tf_err; uintptr_t tf_eip; uint16_t tf_cs; uint16_t tf_padding3; uint32_t tf_eflags; /* below here only when crossing rings, such as from user to kernel */ uintptr_t tf_esp; uint16_t tf_ss; uint16_t tf_padding4; }; #define MAX_IRQS 16 // Number of IRQs // I/O Addresses of the two 8259A programmable interrupt controllers #define IO_PIC1 0x20 // Master (IRQs 0-7) #define IO_PIC2 0xA0 // Slave (IRQs 8-15) #define IRQ_SLAVE 2 // IRQ at which slave connects to master #define IRQ_OFFSET 32 // IRQ 0 corresponds to int IRQ_OFFSET #define IRQ_ERROR 19 #define IRQ_SPURIOUS 31