xv6-riscv-kernel/main.c
rtm 17a856577f init creates console, opens 0/1/2, runs sh
sh accepts 0-argument commands (like userfs)
reads from console
2006-08-11 13:55:18 +00:00

164 lines
4 KiB
C

#include "types.h"
#include "param.h"
#include "mmu.h"
#include "proc.h"
#include "defs.h"
#include "x86.h"
#include "traps.h"
#include "syscall.h"
#include "elf.h"
#include "param.h"
#include "spinlock.h"
extern char edata[], end[];
extern uchar _binary_userfs_start[], _binary_userfs_size[];
extern uchar _binary_init_start[], _binary_init_size[];
// CPU 0 starts running C code here.
// This is called main0 not main so that it can have
// a void return type. Gcc can't handle functions named
// main that don't return int. Really.
void
main0(void)
{
int i;
struct proc *p;
lcr4(0); // xxx copy of cpu #
// clear BSS
memset(edata, 0, end - edata);
// Make sure interrupts stay disabled on all processors
// until each signals it is ready, by pretending to hold
// an extra lock.
// xxx maybe replace w/ acquire remembering if FL_IF
for(i=0; i<NCPU; i++){
cpus[i].nlock++;
cpus[i].guard1 = 0xdeadbeef;
cpus[i].guard2 = 0xdeadbeef;
}
mp_init(); // collect info about this machine
lapic_init(mp_bcpu());
cprintf("\n\ncpu%d: booting xv6\n\n", cpu());
pinit();
binit();
pic_init(); // initialize PIC
ioapic_init();
kinit(); // physical memory allocator
tvinit(); // trap vectors
idtinit(); // this CPU's idt register
fd_init();
iinit();
// create a fake process per CPU
// so each CPU always has a tss and a gdt
for(p = &proc[0]; p < &proc[NCPU]; p++){
p->state = IDLEPROC;
p->kstack = cpus[p-proc].mpstack;
p->pid = p - proc;
}
// fix process 0 so that copyproc() will work
p = &proc[0];
p->sz = 4 * PAGE;
p->mem = kalloc(p->sz);
memset(p->mem, 0, p->sz);
p->kstack = kalloc(KSTACKSIZE);
p->tf = (struct trapframe *) (p->kstack + KSTACKSIZE - sizeof(struct trapframe));
memset(p->tf, 0, sizeof(struct trapframe));
p->tf->es = p->tf->ds = p->tf->ss = (SEG_UDATA << 3) | 3;
p->tf->cs = (SEG_UCODE << 3) | 3;
p->tf->eflags = FL_IF;
setupsegs(p);
// initialize I/O devices, let them enable interrupts
console_init();
ide_init();
mp_startthem();
// turn on timer and enable interrupts on the local APIC
lapic_timerinit();
lapic_enableintr();
// Enable interrupts on this processor.
cprintf("cpu%d: nlock %d before -- and sti\n",
cpu(), cpus[0].nlock);
cpus[cpu()].nlock--;
sti();
p = copyproc(&proc[0]);
//load_icode(p, _binary_usertests_start, (uint) _binary_usertests_size);
//load_icode(p, _binary_userfs_start, (uint) _binary_userfs_size);
load_icode(p, _binary_init_start, (uint) _binary_init_size);
p->state = RUNNABLE;
cprintf("loaded init\n");
scheduler();
}
// Additional processors start here.
void
mpmain(void)
{
lcr4(1); // xxx copy of cpu #
cprintf("cpu%d: starting\n", cpu());
idtinit(); // CPU's idt
if(cpu() == 0)
panic("mpmain on cpu 0");
lapic_init(cpu());
lapic_timerinit();
lapic_enableintr();
setupsegs(&proc[cpu()]);
cpuid(0, 0, 0, 0, 0); // memory barrier
cpus[cpu()].booted = 1;
// Enable interrupts on this processor.
cprintf("cpu%d: initial nlock %d\n", cpu(), cpus[cpu()].nlock);
cpus[cpu()].nlock--;
sti();
scheduler();
}
void
load_icode(struct proc *p, uchar *binary, uint size)
{
int i;
struct elfhdr *elf;
struct proghdr *ph;
// Check magic number on binary
elf = (struct elfhdr*) binary;
cprintf("elf %x magic %x\n", elf, elf->magic);
if (elf->magic != ELF_MAGIC)
panic("load_icode: not an ELF binary");
p->tf->eip = elf->entry;
p->tf->esp = p->sz;
// Map and load segments as directed.
ph = (struct proghdr*) (binary + elf->phoff);
for (i = 0; i < elf->phnum; i++, ph++) {
if (ph->type != ELF_PROG_LOAD)
continue;
cprintf("va %x memsz %d\n", ph->va, ph->memsz);
if (ph->va + ph->memsz < ph->va)
panic("load_icode: overflow in elf header segment");
if (ph->va + ph->memsz >= p->sz)
panic("load_icode: icode wants to be above UTOP");
// Load/clear the segment
memmove(p->mem + ph->va, binary + ph->offset, ph->filesz);
memset(p->mem + ph->va + ph->filesz, 0, ph->memsz - ph->filesz);
}
}