xv6-riscv-kernel/proc.c
Frans Kaashoek ab0db651af Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.

A summary of the changes is as follows:

- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files.  And, we don't
care anymore about booting.

- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!

- Update gdb.tmpl to be for i386 or x86-64

- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
  (32-bit)

- Update elfhdr to be 64 bit

- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt.  The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)

- exec.c: fix passing argv (64-bit now instead of 32-bit).

- initcode.c: use syscall instead of int.

- kernel.ld: load kernel very high, in top terabyte.  64 bits is a lot of
address space!

- proc.c: initial return is through new syscall path instead of trapret.

- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.

- swtch: simplify for x86-64 calling conventions.

- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.

- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.

- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.

- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).

- types.h: add uint64, and change pde_t to uint64

- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit

- vectors: update to make them 64 bits

- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).

- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps.  simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.

TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 08:35:30 -04:00

532 lines
11 KiB
C

#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "x86.h"
#include "proc.h"
#include "spinlock.h"
#include "msr.h"
struct {
struct spinlock lock;
struct proc proc[NPROC];
} ptable;
static struct proc *initproc;
int nextpid = 1;
extern void forkret(void);
extern void sysexit(void);
static void wakeup1(void *chan);
void
pinit(void)
{
initlock(&ptable.lock, "ptable");
}
// Must be called with interrupts disabled
int
cpuid() {
return mycpu()-cpus;
}
// Must be called with interrupts disabled to avoid the caller being
// rescheduled between reading lapicid and running through the loop.
struct cpu*
mycpu(void)
{
int apicid, i;
if(readeflags()&FL_IF)
panic("mycpu called with interrupts enabled\n");
apicid = lapicid();
// APIC IDs are not guaranteed to be contiguous. Maybe we should have
// a reverse map, or reserve a register to store &cpus[i].
for (i = 0; i < ncpu; ++i) {
if (cpus[i].apicid == apicid)
return &cpus[i];
}
panic("unknown apicid\n");
}
// Disable interrupts so that we are not rescheduled
// while reading proc from the cpu structure
struct proc*
myproc(void) {
struct cpu *c;
struct proc *p;
pushcli();
c = mycpu();
p = c->proc;
popcli();
return p;
}
//PAGEBREAK: 32
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and initialize
// state required to run in the kernel.
// Otherwise return 0.
static struct proc*
allocproc(void)
{
struct proc *p;
char *sp;
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == UNUSED)
goto found;
release(&ptable.lock);
return 0;
found:
p->state = EMBRYO;
p->pid = nextpid++;
release(&ptable.lock);
// Allocate kernel stack.
if((p->kstack = kalloc()) == 0){
p->state = UNUSED;
return 0;
}
sp = p->kstack + KSTACKSIZE;
// Leave room for trap frame.
sp -= sizeof *p->tf;
p->tf = (struct trapframe*)sp;
// Set up new context to start executing at forkret,
// which returns to trapret.
sp -= sizeof(uint64);
*(uint64*)sp = (uint64)sysexit;
sp -= sizeof *p->context;
p->context = (struct context*)sp;
memset(p->context, 0, sizeof *p->context);
p->context->eip = (uint64)forkret;
return p;
}
//PAGEBREAK: 32
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];
p = allocproc();
initproc = p;
if((p->pgdir = setupkvm()) == 0)
panic("userinit: out of memory?");
inituvm(p->pgdir, _binary_initcode_start, (uint64)_binary_initcode_size);
p->sz = PGSIZE;
memset(p->tf, 0, sizeof(*p->tf));
p->tf->r11 = FL_IF;
p->tf->rsp = PGSIZE;
p->tf->rcx = 0; // beginning of initcode.S
safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/");
// this assignment to p->state lets other cores
// run this process. the acquire forces the above
// writes to be visible, and the lock is also needed
// because the assignment might not be atomic.
acquire(&ptable.lock);
p->state = RUNNABLE;
release(&ptable.lock);
}
// Grow current process's memory by n bytes.
// Return 0 on success, -1 on failure.
int
growproc(int n)
{
uint sz;
struct proc *curproc = myproc();
sz = curproc->sz;
if(n > 0){
if((sz = allocuvm(curproc->pgdir, sz, sz + n)) == 0)
return -1;
} else if(n < 0){
if((sz = deallocuvm(curproc->pgdir, sz, sz + n)) == 0)
return -1;
}
curproc->sz = sz;
switchuvm(curproc);
return 0;
}
// Create a new process copying p as the parent.
// Sets up stack to return as if from system call.
// Caller must set state of returned proc to RUNNABLE.
int
fork(void)
{
int i, pid;
struct proc *np;
struct proc *curproc = myproc();
// Allocate process.
if((np = allocproc()) == 0){
return -1;
}
// Copy process state from proc.
if((np->pgdir = copyuvm(curproc->pgdir, curproc->sz)) == 0){
kfree(np->kstack);
np->kstack = 0;
np->state = UNUSED;
return -1;
}
np->sz = curproc->sz;
np->parent = curproc;
*np->tf = *curproc->tf;
// Clear %eax so that fork returns 0 in the child.
np->tf->rax = 0;
for(i = 0; i < NOFILE; i++)
if(curproc->ofile[i])
np->ofile[i] = filedup(curproc->ofile[i]);
np->cwd = idup(curproc->cwd);
safestrcpy(np->name, curproc->name, sizeof(curproc->name));
pid = np->pid;
acquire(&ptable.lock);
np->state = RUNNABLE;
release(&ptable.lock);
return pid;
}
// Exit the current process. Does not return.
// An exited process remains in the zombie state
// until its parent calls wait() to find out it exited.
void
exit(void)
{
struct proc *curproc = myproc();
struct proc *p;
int fd;
if(curproc == initproc)
panic("init exiting");
// Close all open files.
for(fd = 0; fd < NOFILE; fd++){
if(curproc->ofile[fd]){
fileclose(curproc->ofile[fd]);
curproc->ofile[fd] = 0;
}
}
begin_op();
iput(curproc->cwd);
end_op();
curproc->cwd = 0;
acquire(&ptable.lock);
// Parent might be sleeping in wait().
wakeup1(curproc->parent);
// Pass abandoned children to init.
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent == curproc){
p->parent = initproc;
if(p->state == ZOMBIE)
wakeup1(initproc);
}
}
// Jump into the scheduler, never to return.
curproc->state = ZOMBIE;
sched();
panic("zombie exit");
}
// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
wait(void)
{
struct proc *p;
int havekids, pid;
struct proc *curproc = myproc();
acquire(&ptable.lock);
for(;;){
// Scan through table looking for exited children.
havekids = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent != curproc)
continue;
havekids = 1;
if(p->state == ZOMBIE){
// Found one.
pid = p->pid;
kfree(p->kstack);
p->kstack = 0;
freevm(p->pgdir, p->sz);
p->pid = 0;
p->parent = 0;
p->name[0] = 0;
p->killed = 0;
p->state = UNUSED;
release(&ptable.lock);
return pid;
}
}
// No point waiting if we don't have any children.
if(!havekids || curproc->killed){
release(&ptable.lock);
return -1;
}
// Wait for children to exit. (See wakeup1 call in proc_exit.)
sleep(curproc, &ptable.lock); //DOC: wait-sleep
}
}
//PAGEBREAK: 42
// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - swtch to start running that process
// - eventually that process transfers control
// via swtch back to the scheduler.
void
scheduler(void)
{
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c->proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&(c->scheduler), p->context);
switchkvm();
// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;
}
release(&ptable.lock);
}
}
// Enter scheduler. Must hold only ptable.lock
// and have changed proc->state. Saves and restores
// intena because intena is a property of this
// kernel thread, not this CPU. It should
// be proc->intena and proc->ncli, but that would
// break in the few places where a lock is held but
// there's no process.
void
sched(void)
{
int intena;
struct proc *p = myproc();
if(!holding(&ptable.lock))
panic("sched ptable.lock");
if(mycpu()->ncli != 1)
panic("sched locks");
if(p->state == RUNNING)
panic("sched running");
if(readeflags()&FL_IF)
panic("sched interruptible");
intena = mycpu()->intena;
swtch(&p->context, mycpu()->scheduler);
mycpu()->intena = intena;
}
// Give up the CPU for one scheduling round.
void
yield(void)
{
acquire(&ptable.lock); //DOC: yieldlock
myproc()->state = RUNNABLE;
sched();
release(&ptable.lock);
}
// A fork child's very first scheduling by scheduler()
// will swtch here. "Return" to user space.
void
forkret(void)
{
static int first = 1;
// Still holding ptable.lock from scheduler.
release(&ptable.lock);
if (first) {
// Some initialization functions must be run in the context
// of a regular process (e.g., they call sleep), and thus cannot
// be run from main().
first = 0;
iinit(ROOTDEV);
initlog(ROOTDEV);
}
// Return to "caller", actually trapret (see allocproc).
}
// Atomically release lock and sleep on chan.
// Reacquires lock when awakened.
void
sleep(void *chan, struct spinlock *lk)
{
struct proc *p = myproc();
if(p == 0)
panic("sleep");
if(lk == 0)
panic("sleep without lk");
// Must acquire ptable.lock in order to
// change p->state and then call sched.
// Once we hold ptable.lock, we can be
// guaranteed that we won't miss any wakeup
// (wakeup runs with ptable.lock locked),
// so it's okay to release lk.
if(lk != &ptable.lock){ //DOC: sleeplock0
acquire(&ptable.lock); //DOC: sleeplock1
release(lk);
}
// Go to sleep.
p->chan = chan;
p->state = SLEEPING;
sched();
// Tidy up.
p->chan = 0;
// Reacquire original lock.
if(lk != &ptable.lock){ //DOC: sleeplock2
release(&ptable.lock);
acquire(lk);
}
}
//PAGEBREAK!
// Wake up all processes sleeping on chan.
// The ptable lock must be held.
static void
wakeup1(void *chan)
{
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == SLEEPING && p->chan == chan)
p->state = RUNNABLE;
}
// Wake up all processes sleeping on chan.
void
wakeup(void *chan)
{
acquire(&ptable.lock);
wakeup1(chan);
release(&ptable.lock);
}
// Kill the process with the given pid.
// Process won't exit until it returns
// to user space (see trap in trap.c).
int
kill(int pid)
{
struct proc *p;
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->pid == pid){
p->killed = 1;
// Wake process from sleep if necessary.
if(p->state == SLEEPING)
p->state = RUNNABLE;
release(&ptable.lock);
return 0;
}
}
release(&ptable.lock);
return -1;
}
//PAGEBREAK: 36
// Print a process listing to console. For debugging.
// Runs when user types ^P on console.
// No lock to avoid wedging a stuck machine further.
void
procdump(void)
{
static char *states[] = {
[UNUSED] "unused",
[EMBRYO] "embryo",
[SLEEPING] "sleep ",
[RUNNABLE] "runble",
[RUNNING] "run ",
[ZOMBIE] "zombie"
};
int i;
struct proc *p;
char *state;
uint64 pc[10];
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state == UNUSED)
continue;
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
state = states[p->state];
else
state = "???";
cprintf("%d %s %s", p->pid, state, p->name);
if(p->state == SLEEPING){
getcallerpcs((uint64*)p->context->ebp+2, pc);
for(i=0; i<10 && pc[i] != 0; i++)
cprintf(" %p", pc[i]);
}
cprintf("\n");
}
}