xv6-riscv-kernel/spinlock.c
Frans Kaashoek 3a5fa7ed90 Introduce and use sleeplocks instead of BUSY flags
Remove I_BUSY, B_BUSY, and intrans defs and usages
One spinlock per buf to avoid ugly loop in bget
fix race in filewrite (don't update f->off after releasing lock)
2011-08-26 10:08:29 -04:00

151 lines
3.5 KiB
C

// Mutual exclusion spin locks.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "x86.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "spinlock.h"
void
initlock(struct spinlock *lk, char *name)
{
lk->name = name;
lk->locked = 0;
lk->cpu = 0;
}
// Acquire a spin lock. Loops (spins) until the lock is acquired.
// Holding a lock for a long time may cause other CPUs to waste time spinning to acquire it.
// Spinlocks shouldn't be held across sleep(); for those cases, use sleeplocks.
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
if(holding(lk))
panic("acquire");
// The xchg is atomic.
// It also serializes, so that reads after acquire are not
// reordered before it.
while(xchg(&lk->locked, 1) != 0)
;
// Record info about lock acquisition for debugging.
lk->cpu = cpu;
getcallerpcs(&lk, lk->pcs);
}
// Release the lock.
void
release(struct spinlock *lk)
{
if(!holding(lk))
panic("release");
lk->pcs[0] = 0;
lk->cpu = 0;
// The xchg serializes, so that reads before release are
// not reordered after it. The 1996 PentiumPro manual (Volume 3,
// 7.2) says reads can be carried out speculatively and in
// any order, which implies we need to serialize here.
// But the 2007 Intel 64 Architecture Memory Ordering White
// Paper says that Intel 64 and IA-32 will not move a load
// after a store. So lock->locked = 0 would work here.
// The xchg being asm volatile ensures gcc emits it after
// the above assignments (and after the critical section).
xchg(&lk->locked, 0);
popcli();
}
// Record the current call stack in pcs[] by following the %ebp chain.
void
getcallerpcs(void *v, uint pcs[])
{
uint *ebp;
int i;
ebp = (uint*)v - 2;
for(i = 0; i < 10; i++){
if(ebp == 0 || ebp < (uint*)KERNBASE || ebp == (uint*)0xffffffff)
break;
pcs[i] = ebp[1]; // saved %eip
ebp = (uint*)ebp[0]; // saved %ebp
}
for(; i < 10; i++)
pcs[i] = 0;
}
// Check whether this cpu is holding the lock.
int
holding(struct spinlock *lock)
{
return lock->locked && lock->cpu == cpu;
}
// Pushcli/popcli are like cli/sti except that they are matched:
// it takes two popcli to undo two pushcli. Also, if interrupts
// are off, then pushcli, popcli leaves them off.
void
pushcli(void)
{
int eflags;
eflags = readeflags();
cli();
if(cpu->ncli++ == 0)
cpu->intena = eflags & FL_IF;
}
void
popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli - interruptible");
if(--cpu->ncli < 0)
panic("popcli");
if(cpu->ncli == 0 && cpu->intena)
sti();
}
void
initsleeplock(struct sleeplock *l)
{
l->locked = 0;
}
// Grab the sleeplock that is protected by spinl. Sleeplocks allow a process to lock
// a data structure for long times, including across sleeps. Other processes that try
// to acquire a sleeplock will be put to sleep when another process hold the sleeplock.
// To update status of the sleeplock atomically, the caller must hold spinl
void
acquire_sleeplock(struct sleeplock *sleepl, struct spinlock *spinl)
{
while (sleepl->locked) {
sleep(sleepl, spinl);
}
sleepl->locked = 1;
}
// Release the sleeplock that is protected by a spin lock
// Caller must hold the spinlock that protects the sleeplock
void
release_sleeplock(struct sleeplock *sleepl)
{
sleepl->locked = 0;
wakeup(sleepl);
}
// Is the sleeplock acquired?
// Caller must hold the spinlock that protects the sleeplock
int
acquired_sleeplock(struct sleeplock *sleepl)
{
return sleepl->locked;
}