ae15515d80
as a direct index into cpus. Record apicid in struct cpu and have cpunum() look for it. Replace cpu->id with cpunum() everywhere, and replace cpu->id with cpu->apicid. Thanks to Xi Wang.
247 lines
6.6 KiB
C
247 lines
6.6 KiB
C
// The local APIC manages internal (non-I/O) interrupts.
|
|
// See Chapter 8 & Appendix C of Intel processor manual volume 3.
|
|
|
|
#include "param.h"
|
|
#include "types.h"
|
|
#include "defs.h"
|
|
#include "date.h"
|
|
#include "memlayout.h"
|
|
#include "traps.h"
|
|
#include "mmu.h"
|
|
#include "x86.h"
|
|
#include "proc.h" // ncpu
|
|
|
|
// Local APIC registers, divided by 4 for use as uint[] indices.
|
|
#define ID (0x0020/4) // ID
|
|
#define VER (0x0030/4) // Version
|
|
#define TPR (0x0080/4) // Task Priority
|
|
#define EOI (0x00B0/4) // EOI
|
|
#define SVR (0x00F0/4) // Spurious Interrupt Vector
|
|
#define ENABLE 0x00000100 // Unit Enable
|
|
#define ESR (0x0280/4) // Error Status
|
|
#define ICRLO (0x0300/4) // Interrupt Command
|
|
#define INIT 0x00000500 // INIT/RESET
|
|
#define STARTUP 0x00000600 // Startup IPI
|
|
#define DELIVS 0x00001000 // Delivery status
|
|
#define ASSERT 0x00004000 // Assert interrupt (vs deassert)
|
|
#define DEASSERT 0x00000000
|
|
#define LEVEL 0x00008000 // Level triggered
|
|
#define BCAST 0x00080000 // Send to all APICs, including self.
|
|
#define BUSY 0x00001000
|
|
#define FIXED 0x00000000
|
|
#define ICRHI (0x0310/4) // Interrupt Command [63:32]
|
|
#define TIMER (0x0320/4) // Local Vector Table 0 (TIMER)
|
|
#define X1 0x0000000B // divide counts by 1
|
|
#define PERIODIC 0x00020000 // Periodic
|
|
#define PCINT (0x0340/4) // Performance Counter LVT
|
|
#define LINT0 (0x0350/4) // Local Vector Table 1 (LINT0)
|
|
#define LINT1 (0x0360/4) // Local Vector Table 2 (LINT1)
|
|
#define ERROR (0x0370/4) // Local Vector Table 3 (ERROR)
|
|
#define MASKED 0x00010000 // Interrupt masked
|
|
#define TICR (0x0380/4) // Timer Initial Count
|
|
#define TCCR (0x0390/4) // Timer Current Count
|
|
#define TDCR (0x03E0/4) // Timer Divide Configuration
|
|
|
|
volatile uint *lapic; // Initialized in mp.c
|
|
|
|
static void
|
|
lapicw(int index, int value)
|
|
{
|
|
lapic[index] = value;
|
|
lapic[ID]; // wait for write to finish, by reading
|
|
}
|
|
//PAGEBREAK!
|
|
|
|
void
|
|
lapicinit(void)
|
|
{
|
|
if(!lapic)
|
|
return;
|
|
|
|
// Enable local APIC; set spurious interrupt vector.
|
|
lapicw(SVR, ENABLE | (T_IRQ0 + IRQ_SPURIOUS));
|
|
|
|
// The timer repeatedly counts down at bus frequency
|
|
// from lapic[TICR] and then issues an interrupt.
|
|
// If xv6 cared more about precise timekeeping,
|
|
// TICR would be calibrated using an external time source.
|
|
lapicw(TDCR, X1);
|
|
lapicw(TIMER, PERIODIC | (T_IRQ0 + IRQ_TIMER));
|
|
lapicw(TICR, 10000000);
|
|
|
|
// Disable logical interrupt lines.
|
|
lapicw(LINT0, MASKED);
|
|
lapicw(LINT1, MASKED);
|
|
|
|
// Disable performance counter overflow interrupts
|
|
// on machines that provide that interrupt entry.
|
|
if(((lapic[VER]>>16) & 0xFF) >= 4)
|
|
lapicw(PCINT, MASKED);
|
|
|
|
// Map error interrupt to IRQ_ERROR.
|
|
lapicw(ERROR, T_IRQ0 + IRQ_ERROR);
|
|
|
|
// Clear error status register (requires back-to-back writes).
|
|
lapicw(ESR, 0);
|
|
lapicw(ESR, 0);
|
|
|
|
// Ack any outstanding interrupts.
|
|
lapicw(EOI, 0);
|
|
|
|
// Send an Init Level De-Assert to synchronise arbitration ID's.
|
|
lapicw(ICRHI, 0);
|
|
lapicw(ICRLO, BCAST | INIT | LEVEL);
|
|
while(lapic[ICRLO] & DELIVS)
|
|
;
|
|
|
|
// Enable interrupts on the APIC (but not on the processor).
|
|
lapicw(TPR, 0);
|
|
}
|
|
|
|
int
|
|
cpunum(void)
|
|
{
|
|
int apicid, i;
|
|
|
|
// Cannot call cpu when interrupts are enabled:
|
|
// result not guaranteed to last long enough to be used!
|
|
// Would prefer to panic but even printing is chancy here:
|
|
// almost everything, including cprintf and panic, calls cpu,
|
|
// often indirectly through acquire and release.
|
|
if(readeflags()&FL_IF){
|
|
static int n;
|
|
if(n++ == 0)
|
|
cprintf("cpu called from %x with interrupts enabled\n",
|
|
__builtin_return_address(0));
|
|
}
|
|
|
|
if (!lapic)
|
|
return 0;
|
|
|
|
apicid = lapic[ID] >> 24;
|
|
for (i = 0; i < ncpu; ++i) {
|
|
if (cpus[i].apicid == apicid)
|
|
return i;
|
|
}
|
|
panic("unknown apicid\n");
|
|
}
|
|
|
|
// Acknowledge interrupt.
|
|
void
|
|
lapiceoi(void)
|
|
{
|
|
if(lapic)
|
|
lapicw(EOI, 0);
|
|
}
|
|
|
|
// Spin for a given number of microseconds.
|
|
// On real hardware would want to tune this dynamically.
|
|
void
|
|
microdelay(int us)
|
|
{
|
|
}
|
|
|
|
#define CMOS_PORT 0x70
|
|
#define CMOS_RETURN 0x71
|
|
|
|
// Start additional processor running entry code at addr.
|
|
// See Appendix B of MultiProcessor Specification.
|
|
void
|
|
lapicstartap(uchar apicid, uint addr)
|
|
{
|
|
int i;
|
|
ushort *wrv;
|
|
|
|
// "The BSP must initialize CMOS shutdown code to 0AH
|
|
// and the warm reset vector (DWORD based at 40:67) to point at
|
|
// the AP startup code prior to the [universal startup algorithm]."
|
|
outb(CMOS_PORT, 0xF); // offset 0xF is shutdown code
|
|
outb(CMOS_PORT+1, 0x0A);
|
|
wrv = (ushort*)P2V((0x40<<4 | 0x67)); // Warm reset vector
|
|
wrv[0] = 0;
|
|
wrv[1] = addr >> 4;
|
|
|
|
// "Universal startup algorithm."
|
|
// Send INIT (level-triggered) interrupt to reset other CPU.
|
|
lapicw(ICRHI, apicid<<24);
|
|
lapicw(ICRLO, INIT | LEVEL | ASSERT);
|
|
microdelay(200);
|
|
lapicw(ICRLO, INIT | LEVEL);
|
|
microdelay(100); // should be 10ms, but too slow in Bochs!
|
|
|
|
// Send startup IPI (twice!) to enter code.
|
|
// Regular hardware is supposed to only accept a STARTUP
|
|
// when it is in the halted state due to an INIT. So the second
|
|
// should be ignored, but it is part of the official Intel algorithm.
|
|
// Bochs complains about the second one. Too bad for Bochs.
|
|
for(i = 0; i < 2; i++){
|
|
lapicw(ICRHI, apicid<<24);
|
|
lapicw(ICRLO, STARTUP | (addr>>12));
|
|
microdelay(200);
|
|
}
|
|
}
|
|
|
|
#define CMOS_STATA 0x0a
|
|
#define CMOS_STATB 0x0b
|
|
#define CMOS_UIP (1 << 7) // RTC update in progress
|
|
|
|
#define SECS 0x00
|
|
#define MINS 0x02
|
|
#define HOURS 0x04
|
|
#define DAY 0x07
|
|
#define MONTH 0x08
|
|
#define YEAR 0x09
|
|
|
|
static uint cmos_read(uint reg)
|
|
{
|
|
outb(CMOS_PORT, reg);
|
|
microdelay(200);
|
|
|
|
return inb(CMOS_RETURN);
|
|
}
|
|
|
|
static void fill_rtcdate(struct rtcdate *r)
|
|
{
|
|
r->second = cmos_read(SECS);
|
|
r->minute = cmos_read(MINS);
|
|
r->hour = cmos_read(HOURS);
|
|
r->day = cmos_read(DAY);
|
|
r->month = cmos_read(MONTH);
|
|
r->year = cmos_read(YEAR);
|
|
}
|
|
|
|
// qemu seems to use 24-hour GWT and the values are BCD encoded
|
|
void cmostime(struct rtcdate *r)
|
|
{
|
|
struct rtcdate t1, t2;
|
|
int sb, bcd;
|
|
|
|
sb = cmos_read(CMOS_STATB);
|
|
|
|
bcd = (sb & (1 << 2)) == 0;
|
|
|
|
// make sure CMOS doesn't modify time while we read it
|
|
for(;;) {
|
|
fill_rtcdate(&t1);
|
|
if(cmos_read(CMOS_STATA) & CMOS_UIP)
|
|
continue;
|
|
fill_rtcdate(&t2);
|
|
if(memcmp(&t1, &t2, sizeof(t1)) == 0)
|
|
break;
|
|
}
|
|
|
|
// convert
|
|
if(bcd) {
|
|
#define CONV(x) (t1.x = ((t1.x >> 4) * 10) + (t1.x & 0xf))
|
|
CONV(second);
|
|
CONV(minute);
|
|
CONV(hour );
|
|
CONV(day );
|
|
CONV(month );
|
|
CONV(year );
|
|
#undef CONV
|
|
}
|
|
|
|
*r = t1;
|
|
r->year += 2000;
|
|
}
|