8148b6ee53
nesting cli/sti: release shouldn't always enable interrupts separate setup of lapic from starting of other cpus, so cpu() works earlier flag to disable locking in console output make locks work even when curproc==0 (still crashes in clock interrupt)
275 lines
6 KiB
C
275 lines
6 KiB
C
#include "types.h"
|
|
#include "mmu.h"
|
|
#include "x86.h"
|
|
#include "param.h"
|
|
#include "fd.h"
|
|
#include "proc.h"
|
|
#include "defs.h"
|
|
#include "spinlock.h"
|
|
|
|
struct spinlock proc_table_lock;
|
|
|
|
struct proc proc[NPROC];
|
|
struct proc *curproc[NCPU];
|
|
int next_pid = 1;
|
|
|
|
/*
|
|
* set up a process's task state and segment descriptors
|
|
* correctly, given its current size and address in memory.
|
|
* this should be called whenever the latter change.
|
|
* doesn't change the cpu's current segmentation setup.
|
|
*/
|
|
void
|
|
setupsegs(struct proc *p)
|
|
{
|
|
memset(&p->ts, 0, sizeof(struct Taskstate));
|
|
p->ts.ts_ss0 = SEG_KDATA << 3;
|
|
p->ts.ts_esp0 = (unsigned)(p->kstack + KSTACKSIZE);
|
|
|
|
// XXX it may be wrong to modify the current segment table!
|
|
|
|
p->gdt[0] = SEG_NULL;
|
|
p->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
|
|
p->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
|
|
p->gdt[SEG_TSS] = SEG16(STS_T32A, (unsigned) &p->ts,
|
|
sizeof(p->ts), 0);
|
|
p->gdt[SEG_TSS].sd_s = 0;
|
|
p->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (unsigned)p->mem, p->sz, 3);
|
|
p->gdt[SEG_UDATA] = SEG(STA_W, (unsigned)p->mem, p->sz, 3);
|
|
p->gdt_pd.pd__garbage = 0;
|
|
p->gdt_pd.pd_lim = sizeof(p->gdt) - 1;
|
|
p->gdt_pd.pd_base = (unsigned) p->gdt;
|
|
}
|
|
|
|
extern void trapret();
|
|
|
|
/*
|
|
* internal fork(). does not copy kernel stack; instead,
|
|
* sets up the stack to return as if from system call.
|
|
* caller must set state to RUNNABLE.
|
|
*/
|
|
struct proc *
|
|
newproc()
|
|
{
|
|
struct proc *np;
|
|
struct proc *op;
|
|
int fd;
|
|
|
|
acquire(&proc_table_lock);
|
|
|
|
for(np = &proc[1]; np < &proc[NPROC]; np++){
|
|
if(np->state == UNUSED){
|
|
np->state = EMBRYO;
|
|
break;
|
|
}
|
|
}
|
|
if(np >= &proc[NPROC]){
|
|
release(&proc_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
// copy from proc[0] if we're bootstrapping
|
|
op = curproc[cpu()];
|
|
if(op == 0)
|
|
op = &proc[0];
|
|
|
|
np->pid = next_pid++;
|
|
np->ppid = op->pid;
|
|
|
|
release(&proc_table_lock);
|
|
|
|
np->sz = op->sz;
|
|
np->mem = kalloc(op->sz);
|
|
if(np->mem == 0)
|
|
return 0;
|
|
memcpy(np->mem, op->mem, np->sz);
|
|
np->kstack = kalloc(KSTACKSIZE);
|
|
if(np->kstack == 0){
|
|
kfree(np->mem, op->sz);
|
|
np->state = UNUSED;
|
|
return 0;
|
|
}
|
|
setupsegs(np);
|
|
|
|
// set up kernel stack to return to user space
|
|
np->tf = (struct Trapframe *) (np->kstack + KSTACKSIZE - sizeof(struct Trapframe));
|
|
*(np->tf) = *(op->tf);
|
|
np->tf->tf_regs.reg_eax = 0; // so fork() returns 0 in child
|
|
cprintf("newproc pid=%d return to %x:%x tf-%p\n", np->pid, np->tf->tf_cs, np->tf->tf_eip, np->tf);
|
|
|
|
// set up new jmpbuf to start executing at trapret with esp pointing at tf
|
|
memset(&np->jmpbuf, 0, sizeof np->jmpbuf);
|
|
np->jmpbuf.jb_eip = (unsigned) trapret;
|
|
np->jmpbuf.jb_esp = (unsigned) np->tf - 4; // -4 for the %eip that isn't actually there
|
|
|
|
// copy file descriptors
|
|
for(fd = 0; fd < NOFILE; fd++){
|
|
np->fds[fd] = op->fds[fd];
|
|
if(np->fds[fd])
|
|
fd_reference(np->fds[fd]);
|
|
}
|
|
|
|
cprintf("newproc %x\n", np);
|
|
|
|
return np;
|
|
}
|
|
|
|
void
|
|
scheduler(void)
|
|
{
|
|
struct proc *op, *np;
|
|
int i;
|
|
|
|
cprintf("start scheduler on cpu %d jmpbuf %p\n", cpu(), &cpus[cpu()].jmpbuf);
|
|
cpus[cpu()].lastproc = &proc[0];
|
|
|
|
setjmp(&cpus[cpu()].jmpbuf);
|
|
|
|
op = curproc[cpu()];
|
|
if(op){
|
|
if(op->newstate <= 0 || op->newstate > ZOMBIE)
|
|
panic("scheduler");
|
|
op->state = op->newstate;
|
|
op->newstate = -1;
|
|
}
|
|
|
|
// find a runnable process and switch to it
|
|
curproc[cpu()] = 0;
|
|
np = cpus[cpu()].lastproc + 1;
|
|
while(1){
|
|
acquire(&proc_table_lock);
|
|
for(i = 0; i < NPROC; i++){
|
|
if(np >= &proc[NPROC])
|
|
np = &proc[0];
|
|
if(np->state == RUNNABLE)
|
|
break;
|
|
np++;
|
|
}
|
|
|
|
if(i < NPROC){
|
|
np->state = RUNNING;
|
|
release(&proc_table_lock);
|
|
break;
|
|
}
|
|
|
|
release(&proc_table_lock);
|
|
np = &proc[0];
|
|
}
|
|
|
|
cpus[cpu()].lastproc = np;
|
|
curproc[cpu()] = np;
|
|
|
|
// h/w sets busy bit in TSS descriptor sometimes, and faults
|
|
// if it's set in LTR. so clear tss descriptor busy bit.
|
|
np->gdt[SEG_TSS].sd_type = STS_T32A;
|
|
|
|
// XXX should probably have an lgdt() function in x86.h
|
|
// to confine all the inline assembly.
|
|
// XXX probably ought to lgdt on trap return too, in case
|
|
// a system call has moved a program or changed its size.
|
|
asm volatile("lgdt %0" : : "g" (np->gdt_pd.pd_lim));
|
|
ltr(SEG_TSS << 3);
|
|
|
|
if(0) cprintf("cpu%d: run %d esp=%p callerpc=%p\n", cpu(), np-proc);
|
|
longjmp(&np->jmpbuf);
|
|
}
|
|
|
|
// give up the cpu by switching to the scheduler,
|
|
// which runs on the per-cpu stack.
|
|
void
|
|
swtch(int newstate)
|
|
{
|
|
struct proc *p = curproc[cpu()];
|
|
if(p == 0)
|
|
panic("swtch");
|
|
p->newstate = newstate; // basically an argument to scheduler()
|
|
if(setjmp(&p->jmpbuf) == 0)
|
|
longjmp(&cpus[cpu()].jmpbuf);
|
|
}
|
|
|
|
void
|
|
sleep(void *chan)
|
|
{
|
|
struct proc *p = curproc[cpu()];
|
|
if(p == 0)
|
|
panic("sleep");
|
|
p->chan = chan;
|
|
swtch(WAITING);
|
|
}
|
|
|
|
void
|
|
wakeup(void *chan)
|
|
{
|
|
struct proc *p;
|
|
|
|
acquire(&proc_table_lock);
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->state == WAITING && p->chan == chan)
|
|
p->state = RUNNABLE;
|
|
release(&proc_table_lock);
|
|
}
|
|
|
|
// give up the CPU but stay marked as RUNNABLE
|
|
void
|
|
yield()
|
|
{
|
|
if(curproc[cpu()] == 0 || curproc[cpu()]->state != RUNNING)
|
|
panic("yield");
|
|
swtch(RUNNABLE);
|
|
}
|
|
|
|
void
|
|
proc_exit()
|
|
{
|
|
struct proc *p;
|
|
struct proc *cp = curproc[cpu()];
|
|
int fd;
|
|
|
|
cprintf("exit %x\n", cp);
|
|
|
|
for(fd = 0; fd < NOFILE; fd++){
|
|
if(cp->fds[fd]){
|
|
fd_close(cp->fds[fd]);
|
|
cp->fds[fd] = 0;
|
|
}
|
|
}
|
|
|
|
acquire(&proc_table_lock);
|
|
|
|
// wake up parent
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->pid == cp->ppid)
|
|
wakeup(p);
|
|
|
|
// abandon children
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->ppid == cp->pid)
|
|
p->pid = 1;
|
|
|
|
acquire(&proc_table_lock);
|
|
|
|
// switch into scheduler
|
|
swtch(ZOMBIE);
|
|
}
|
|
|
|
// disable interrupts
|
|
void
|
|
cli(void)
|
|
{
|
|
cpus[cpu()].clis += 1;
|
|
if(cpus[cpu()].clis == 1)
|
|
__asm __volatile("cli");
|
|
}
|
|
|
|
// enable interrupts
|
|
void
|
|
sti(void)
|
|
{
|
|
if(cpus[cpu()].clis < 1){
|
|
cprintf("cpu %d clis %d\n", cpu(), cpus[cpu()].clis);
|
|
panic("sti");
|
|
}
|
|
cpus[cpu()].clis -= 1;
|
|
if(cpus[cpu()].clis < 1)
|
|
__asm __volatile("sti");
|
|
}
|