xv6-riscv-kernel/mp.h
Frans Kaashoek ab0db651af Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.

A summary of the changes is as follows:

- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files.  And, we don't
care anymore about booting.

- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!

- Update gdb.tmpl to be for i386 or x86-64

- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
  (32-bit)

- Update elfhdr to be 64 bit

- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt.  The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)

- exec.c: fix passing argv (64-bit now instead of 32-bit).

- initcode.c: use syscall instead of int.

- kernel.ld: load kernel very high, in top terabyte.  64 bits is a lot of
address space!

- proc.c: initial return is through new syscall path instead of trapret.

- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.

- swtch: simplify for x86-64 calling conventions.

- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.

- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.

- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.

- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).

- types.h: add uint64, and change pde_t to uint64

- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit

- vectors: update to make them 64 bits

- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).

- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps.  simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.

TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 08:35:30 -04:00

56 lines
2.1 KiB
C

// See MultiProcessor Specification Version 1.[14]
struct mp { // floating pointer
uchar signature[4]; // "_MP_"
uint32 physaddr; // phys addr of MP config table
uchar length; // 1
uchar specrev; // [14]
uchar checksum; // all bytes must add up to 0
uchar type; // MP system config type
uchar imcrp;
uchar reserved[3];
};
struct mpconf { // configuration table header
uchar signature[4]; // "PCMP"
ushort length; // total table length
uchar version; // [14]
uchar checksum; // all bytes must add up to 0
uchar product[20]; // product id
uint32 oemtable; // OEM table pointer
ushort oemlength; // OEM table length
ushort entry; // entry count
uint32 lapicaddr_p; // address of local APIC
ushort xlength; // extended table length
uchar xchecksum; // extended table checksum
uchar reserved;
};
struct mpproc { // processor table entry
uchar type; // entry type (0)
uchar apicid; // local APIC id
uchar version; // local APIC verison
uchar flags; // CPU flags
#define MPBOOT 0x02 // This proc is the bootstrap processor.
uchar signature[4]; // CPU signature
uint feature; // feature flags from CPUID instruction
uchar reserved[8];
};
struct mpioapic { // I/O APIC table entry
uchar type; // entry type (2)
uchar apicno; // I/O APIC id
uchar version; // I/O APIC version
uchar flags; // I/O APIC flags
uint32 addr_p; // I/O APIC address
};
// Table entry types
#define MPPROC 0x00 // One per processor
#define MPBUS 0x01 // One per bus
#define MPIOAPIC 0x02 // One per I/O APIC
#define MPIOINTR 0x03 // One per bus interrupt source
#define MPLINTR 0x04 // One per system interrupt source
//PAGEBREAK!
// Blank page.