xv6-riscv-kernel/syscall.c
Frans Kaashoek ab0db651af Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.

A summary of the changes is as follows:

- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files.  And, we don't
care anymore about booting.

- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!

- Update gdb.tmpl to be for i386 or x86-64

- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
  (32-bit)

- Update elfhdr to be 64 bit

- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt.  The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)

- exec.c: fix passing argv (64-bit now instead of 32-bit).

- initcode.c: use syscall instead of int.

- kernel.ld: load kernel very high, in top terabyte.  64 bits is a lot of
address space!

- proc.c: initial return is through new syscall path instead of trapret.

- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.

- swtch: simplify for x86-64 calling conventions.

- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.

- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.

- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.

- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).

- types.h: add uint64, and change pde_t to uint64

- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit

- vectors: update to make them 64 bits

- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).

- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps.  simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.

TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 08:35:30 -04:00

185 lines
4 KiB
C

#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
#include "syscall.h"
// User code makes a system call with INT T_SYSCALL.
// System call number in %eax.
// Arguments on the stack, from the user call to the C
// library system call function. The saved user %esp points
// to a saved program counter, and then the first argument.
// Fetch the int at addr from the current process.
int
fetchint(uint64 addr, int *ip)
{
struct proc *curproc = myproc();
if(addr >= curproc->sz || addr+4 > curproc->sz)
return -1;
*ip = *(uint64*)(addr);
return 0;
}
// Fetch the nul-terminated string at addr from the current process.
// Doesn't actually copy the string - just sets *pp to point at it.
// Returns length of string, not including nul.
int
fetchstr(uint64 addr, char **pp)
{
char *s, *ep;
struct proc *curproc = myproc();
if(addr >= curproc->sz)
return -1;
*pp = (char*)addr;
ep = (char*)curproc->sz;
for(s = *pp; s < ep; s++){
if(*s == 0)
return s - *pp;
}
return -1;
}
static uint64
fetcharg(int n)
{
struct proc *curproc = myproc();
switch (n) {
case 0:
return curproc->tf->rdi;
case 1:
return curproc->tf->rsi;
case 2:
return curproc->tf->rdx;
case 3:
return curproc->tf->r10;
case 4:
return curproc->tf->r8;
case 5:
return curproc->tf->r9;
}
panic("fetcharg");
return -1;
}
int
fetchaddr(uint64 addr, uint64 *ip)
{
struct proc *curproc = myproc();
if(addr >= curproc->sz || addr+sizeof(uint64) > curproc->sz)
return -1;
*ip = *(uint64*)(addr);
return 0;
}
// Fetch the nth 32-bit system call argument.
int
argint(int n, int *ip)
{
*ip = fetcharg(n);
return 0;
}
int
argaddr(int n, uint64 *ip)
{
*ip = fetcharg(n);
return 0;
}
// Fetch the nth word-sized system call argument as a pointer
// to a block of memory of size bytes. Check that the pointer
// lies within the process address space.
int
argptr(int n, char **pp, int size)
{
uint64 i;
struct proc *curproc = myproc();
if(argaddr(n, &i) < 0)
return -1;
if(size < 0 || (uint)i >= curproc->sz || (uint)i+size > curproc->sz)
return -1;
*pp = (char*)i;
return 0;
}
// Fetch the nth word-sized system call argument as a string pointer.
// Check that the pointer is valid and the string is nul-terminated.
// (There is no shared writable memory, so the string can't change
// between this check and being used by the kernel.)
int
argstr(int n, char **pp)
{
int addr;
if(argint(n, &addr) < 0)
return -1;
return fetchstr(addr, pp);
}
extern int sys_chdir(void);
extern int sys_close(void);
extern int sys_dup(void);
extern int sys_exec(void);
extern int sys_exit(void);
extern int sys_fork(void);
extern int sys_fstat(void);
extern int sys_getpid(void);
extern int sys_kill(void);
extern int sys_link(void);
extern int sys_mkdir(void);
extern int sys_mknod(void);
extern int sys_open(void);
extern int sys_pipe(void);
extern int sys_read(void);
extern int sys_sbrk(void);
extern int sys_sleep(void);
extern int sys_unlink(void);
extern int sys_wait(void);
extern int sys_write(void);
extern int sys_uptime(void);
static int (*syscalls[])(void) = {
[SYS_fork] sys_fork,
[SYS_exit] sys_exit,
[SYS_wait] sys_wait,
[SYS_pipe] sys_pipe,
[SYS_read] sys_read,
[SYS_kill] sys_kill,
[SYS_exec] sys_exec,
[SYS_fstat] sys_fstat,
[SYS_chdir] sys_chdir,
[SYS_dup] sys_dup,
[SYS_getpid] sys_getpid,
[SYS_sbrk] sys_sbrk,
[SYS_sleep] sys_sleep,
[SYS_uptime] sys_uptime,
[SYS_open] sys_open,
[SYS_write] sys_write,
[SYS_mknod] sys_mknod,
[SYS_unlink] sys_unlink,
[SYS_link] sys_link,
[SYS_mkdir] sys_mkdir,
[SYS_close] sys_close,
};
void
syscall(void)
{
int num;
struct proc *curproc = myproc();
num = curproc->tf->rax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {
curproc->tf->rax = syscalls[num]();
} else {
cprintf("%d %s: unknown sys call %d\n",
curproc->pid, curproc->name, num);
curproc->tf->rax = -1;
}
}