EITF55-project1/py/sketch.py
2025-02-16 09:11:06 +01:00

97 lines
1.7 KiB
Python

import random
def miller_rabin(n, k=5):
if n == 2 or n == 3:
return True
if n <= 1 or n % 2 == 0:
return False
# Write n-1 as d * 2^r
r = 0
d = n - 1
while d % 2 == 0:
d //= 2
r += 1
# Perform the test k times
for _ in range(k):
a = random.randint(2, n - 2)
x = pow(a, d, n) # x = a^d % n
if x == 1 or x == n - 1:
continue
# Keep squaring x and check for n-1
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
assert miller_rabin(0) == False
assert miller_rabin(1) == False
assert miller_rabin(2) == True
assert miller_rabin(3) == True
assert miller_rabin(4) == False
def primitive_isprime(num):
for n in range(2, int(num**0.5) + 1):
if num % n == 0:
return False
return True
assert not miller_rabin(8)
assert miller_rabin(11)
def mod_inverse(a, m):
return pow(a, -1, m)
assert mod_inverse(3, 7) == 5
assert mod_inverse(10, 17) == 12
assert mod_inverse(7, 13) == 2
assert mod_inverse(65537, 3445361432) is not None
def gcd(x, y):
while y:
x, y = y, x % y
return abs(x)
assert gcd(3, 9) == 3
assert gcd(3, 4) == 1
p = 60737
q = 56713
assert miller_rabin(p)
assert miller_rabin(q)
n = p * q
phi_n = (p - 1) * (q - 1)
assert not miller_rabin(n)
assert not miller_rabin(phi_n)
e = 65537
assert e == (1 << 16) | 0x1
assert gcd(e, phi_n) == 1
d = mod_inverse(e, phi_n)
assert d is not None and (e * d) % phi_n == 1
m = 69
c = pow(69, e, n)
dec = pow(c, d, n)
print("Ciphertext: ", c)
print("Decrypted: ", dec)
assert dec == m