xv6-riscv-kernel/user/usertests.c

3093 lines
61 KiB
C
Raw Permalink Normal View History

#include "kernel/param.h"
#include "kernel/types.h"
#include "user/user.h"
#include "kernel/fs.h"
#include "kernel/fcntl.h"
#include "kernel/memlayout.h"
2019-07-23 00:08:52 +02:00
#include "kernel/riscv.h"
//
// Tests xv6 system calls. usertests without arguments runs them all
// and usertests <name> runs <name> test. The test runner creates for
// each test a process and based on the exit status of the process,
// the test runner reports "OK" or "FAILED". Some tests result in
// kernel printing usertrap messages, which can be ignored if test
// prints "OK".
//
2024-06-15 16:55:06 +02:00
#define BUFSZ ((MAXOPBLOCKS + 2) * BSIZE)
char buf[BUFSZ];
2006-09-07 15:23:41 +02:00
//
// Section with tests that run fairly quickly. Use -q if you want to
// run just those. With -q usertests also runs the ones that take a
// fair of time.
//
// what if you pass ridiculous pointers to system calls
// that read user memory with copyin?
void
copyin(char *s)
{
2024-05-24 11:26:40 +02:00
u64 addrs[] = { 0x80000000LL, 0xffffffffffffffff };
2024-06-15 16:55:06 +02:00
for(int ai = 0; ai < 2; ai++) {
2024-05-24 11:26:40 +02:00
u64 addr = addrs[ai];
2024-06-15 16:55:06 +02:00
int fd = open("copyin1", O_CREATE | O_WRONLY);
if(fd < 0) {
printf("open(copyin1) failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
int n = write(fd, (void *)addr, 8192);
if(n >= 0) {
printf("write(fd, %p, 8192) returned %d, not -1\n", addr, n);
exit(1);
}
close(fd);
unlink("copyin1");
2024-06-15 16:55:06 +02:00
n = write(1, (char *)addr, 8192);
if(n > 0) {
printf("write(1, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
2024-06-15 16:55:06 +02:00
int fds[2];
2024-06-15 16:55:06 +02:00
if(pipe(fds) < 0) {
printf("pipe() failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
n = write(fds[1], (char *)addr, 8192);
if(n > 0) {
printf("write(pipe, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fds[0]);
close(fds[1]);
}
}
// what if you pass ridiculous pointers to system calls
// that write user memory with copyout?
void
copyout(char *s)
{
2024-05-24 11:26:40 +02:00
u64 addrs[] = { 0x80000000LL, 0xffffffffffffffff };
2024-06-15 16:55:06 +02:00
for(int ai = 0; ai < 2; ai++) {
2024-05-24 11:26:40 +02:00
u64 addr = addrs[ai];
int fd = open("README", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("open(README) failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
int n = read(fd, (void *)addr, 8192);
if(n > 0) {
printf("read(fd, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fd);
int fds[2];
2024-06-15 16:55:06 +02:00
if(pipe(fds) < 0) {
printf("pipe() failed\n");
exit(1);
}
n = write(fds[1], "x", 1);
2024-06-15 16:55:06 +02:00
if(n != 1) {
printf("pipe write failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
n = read(fds[0], (void *)addr, 8192);
if(n > 0) {
printf("read(pipe, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fds[0]);
close(fds[1]);
}
}
// what if you pass ridiculous string pointers to system calls?
void
copyinstr1(char *s)
{
2024-05-24 11:26:40 +02:00
u64 addrs[] = { 0x80000000LL, 0xffffffffffffffff };
2024-06-15 16:55:06 +02:00
for(int ai = 0; ai < 2; ai++) {
2024-05-24 11:26:40 +02:00
u64 addr = addrs[ai];
2024-06-15 16:55:06 +02:00
int fd = open((char *)addr, O_CREATE | O_WRONLY);
if(fd >= 0) {
printf("open(%p) returned %d, not -1\n", addr, fd);
exit(1);
}
}
}
// what if a string system call argument is exactly the size
// of the kernel buffer it is copied into, so that the null
// would fall just beyond the end of the kernel buffer?
void
copyinstr2(char *s)
{
2024-06-15 16:55:06 +02:00
char b[MAXPATH + 1];
for(int i = 0; i < MAXPATH; i++)
b[i] = 'x';
b[MAXPATH] = '\0';
2024-06-15 16:55:06 +02:00
int ret = unlink(b);
2024-06-15 16:55:06 +02:00
if(ret != -1) {
printf("unlink(%s) returned %d, not -1\n", b, ret);
exit(1);
}
int fd = open(b, O_CREATE | O_WRONLY);
2024-06-15 16:55:06 +02:00
if(fd != -1) {
printf("open(%s) returned %d, not -1\n", b, fd);
exit(1);
}
ret = link(b, b);
2024-06-15 16:55:06 +02:00
if(ret != -1) {
printf("link(%s, %s) returned %d, not -1\n", b, b, ret);
exit(1);
}
char *args[] = { "xx", 0 };
ret = exec(b, args);
2024-06-15 16:55:06 +02:00
if(ret != -1) {
printf("exec(%s) returned %d, not -1\n", b, fd);
exit(1);
}
int pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
static char big[PGSIZE + 1];
for(int i = 0; i < PGSIZE; i++)
big[i] = 'x';
big[PGSIZE] = '\0';
char *args2[] = { big, big, big, 0 };
ret = exec("echo", args2);
2024-06-15 16:55:06 +02:00
if(ret != -1) {
printf("exec(echo, BIG) returned %d, not -1\n", fd);
exit(1);
}
exit(747); // OK
}
int st = 0;
wait(&st);
2024-06-15 16:55:06 +02:00
if(st != 747) {
printf("exec(echo, BIG) succeeded, should have failed\n");
exit(1);
}
}
// what if a string argument crosses over the end of last user page?
void
copyinstr3(char *s)
{
sbrk(8192);
2024-06-15 16:55:06 +02:00
u64 top = (u64)sbrk(0);
if((top % PGSIZE) != 0) {
sbrk(PGSIZE - (top % PGSIZE));
}
2024-06-15 16:55:06 +02:00
top = (u64)sbrk(0);
if(top % PGSIZE) {
printf("oops\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
char *b = (char *)(top - 1);
*b = 'x';
int ret = unlink(b);
2024-06-15 16:55:06 +02:00
if(ret != -1) {
printf("unlink(%s) returned %d, not -1\n", b, ret);
exit(1);
}
int fd = open(b, O_CREATE | O_WRONLY);
2024-06-15 16:55:06 +02:00
if(fd != -1) {
printf("open(%s) returned %d, not -1\n", b, fd);
exit(1);
}
ret = link(b, b);
2024-06-15 16:55:06 +02:00
if(ret != -1) {
printf("link(%s, %s) returned %d, not -1\n", b, b, ret);
exit(1);
}
char *args[] = { "xx", 0 };
ret = exec(b, args);
2024-06-15 16:55:06 +02:00
if(ret != -1) {
printf("exec(%s) returned %d, not -1\n", b, fd);
exit(1);
}
}
// See if the kernel refuses to read/write user memory that the
// application doesn't have anymore, because it returned it.
void
rwsbrk()
{
int fd, n;
2024-06-15 16:55:06 +02:00
u64 a = (u64)sbrk(8192);
if(a == 0xffffffffffffffffLL) {
printf("sbrk(rwsbrk) failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if((u64)sbrk(-8192) == 0xffffffffffffffffLL) {
printf("sbrk(rwsbrk) shrink failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
fd = open("rwsbrk", O_CREATE | O_WRONLY);
if(fd < 0) {
printf("open(rwsbrk) failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
n = write(fd, (void *)(a + 4096), 1024);
if(n >= 0) {
printf("write(fd, %p, 1024) returned %d, not -1\n", a + 4096, n);
exit(1);
}
close(fd);
unlink("rwsbrk");
fd = open("README", O_RDONLY);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("open(rwsbrk) failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
n = read(fd, (void *)(a + 4096), 10);
if(n >= 0) {
printf("read(fd, %p, 10) returned %d, not -1\n", a + 4096, n);
exit(1);
}
close(fd);
2024-06-15 16:55:06 +02:00
exit(0);
}
2020-07-16 17:38:08 +02:00
// test O_TRUNC.
void
truncate1(char *s)
{
char buf[32];
2024-06-15 16:55:06 +02:00
2020-07-16 17:38:08 +02:00
unlink("truncfile");
2024-06-15 16:55:06 +02:00
int fd1 = open("truncfile", O_CREATE | O_WRONLY | O_TRUNC);
2020-07-16 17:38:08 +02:00
write(fd1, "abcd", 4);
close(fd1);
int fd2 = open("truncfile", O_RDONLY);
int n = read(fd2, buf, sizeof(buf));
2024-06-15 16:55:06 +02:00
if(n != 4) {
2020-07-16 17:38:08 +02:00
printf("%s: read %d bytes, wanted 4\n", s, n);
exit(1);
}
2024-06-15 16:55:06 +02:00
fd1 = open("truncfile", O_WRONLY | O_TRUNC);
2020-07-16 17:38:08 +02:00
int fd3 = open("truncfile", O_RDONLY);
n = read(fd3, buf, sizeof(buf));
2024-06-15 16:55:06 +02:00
if(n != 0) {
2020-07-16 17:38:08 +02:00
printf("aaa fd3=%d\n", fd3);
printf("%s: read %d bytes, wanted 0\n", s, n);
exit(1);
}
n = read(fd2, buf, sizeof(buf));
2024-06-15 16:55:06 +02:00
if(n != 0) {
2020-07-16 17:38:08 +02:00
printf("bbb fd2=%d\n", fd2);
printf("%s: read %d bytes, wanted 0\n", s, n);
exit(1);
}
2024-06-15 16:55:06 +02:00
2020-07-16 17:38:08 +02:00
write(fd1, "abcdef", 6);
n = read(fd3, buf, sizeof(buf));
2024-06-15 16:55:06 +02:00
if(n != 6) {
2020-07-16 17:38:08 +02:00
printf("%s: read %d bytes, wanted 6\n", s, n);
exit(1);
}
n = read(fd2, buf, sizeof(buf));
2024-06-15 16:55:06 +02:00
if(n != 2) {
2020-07-16 17:38:08 +02:00
printf("%s: read %d bytes, wanted 2\n", s, n);
exit(1);
}
unlink("truncfile");
close(fd1);
close(fd2);
close(fd3);
}
// write to an open FD whose file has just been truncated.
// this causes a write at an offset beyond the end of the file.
// such writes fail on xv6 (unlike POSIX) but at least
// they don't crash.
void
truncate2(char *s)
{
unlink("truncfile");
2024-06-15 16:55:06 +02:00
int fd1 = open("truncfile", O_CREATE | O_TRUNC | O_WRONLY);
2020-07-16 17:38:08 +02:00
write(fd1, "abcd", 4);
2024-06-15 16:55:06 +02:00
int fd2 = open("truncfile", O_TRUNC | O_WRONLY);
2020-07-16 17:38:08 +02:00
int n = write(fd1, "x", 1);
2024-06-15 16:55:06 +02:00
if(n != -1) {
2020-07-16 17:38:08 +02:00
printf("%s: write returned %d, expected -1\n", s, n);
exit(1);
}
unlink("truncfile");
close(fd1);
close(fd2);
}
void
truncate3(char *s)
{
int pid, xstatus;
2024-06-15 16:55:06 +02:00
close(open("truncfile", O_CREATE | O_TRUNC | O_WRONLY));
2020-07-16 17:38:08 +02:00
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
2020-07-16 17:38:08 +02:00
printf("%s: fork failed\n", s);
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
for(int i = 0; i < 100; i++) {
2020-07-16 17:38:08 +02:00
char buf[32];
2024-06-15 16:55:06 +02:00
int fd = open("truncfile", O_WRONLY);
if(fd < 0) {
2020-07-16 17:38:08 +02:00
printf("%s: open failed\n", s);
exit(1);
}
int n = write(fd, "1234567890", 10);
2024-06-15 16:55:06 +02:00
if(n != 10) {
2020-07-16 17:38:08 +02:00
printf("%s: write got %d, expected 10\n", s, n);
exit(1);
}
close(fd);
fd = open("truncfile", O_RDONLY);
read(fd, buf, sizeof(buf));
close(fd);
}
exit(0);
}
2024-06-15 16:55:06 +02:00
for(int i = 0; i < 150; i++) {
int fd = open("truncfile", O_CREATE | O_WRONLY | O_TRUNC);
if(fd < 0) {
2020-07-16 17:38:08 +02:00
printf("%s: open failed\n", s);
exit(1);
}
int n = write(fd, "xxx", 3);
2024-06-15 16:55:06 +02:00
if(n != 3) {
2020-07-16 17:38:08 +02:00
printf("%s: write got %d, expected 3\n", s, n);
exit(1);
}
close(fd);
}
wait(&xstatus);
unlink("truncfile");
exit(xstatus);
}
// does chdir() call iput(p->cwd) in a transaction?
void
iputtest(char *s)
{
2024-06-15 16:55:06 +02:00
if(mkdir("iputdir") < 0) {
printf("%s: mkdir failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(chdir("iputdir") < 0) {
printf("%s: chdir iputdir failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(unlink("../iputdir") < 0) {
printf("%s: unlink ../iputdir failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(chdir("/") < 0) {
printf("%s: chdir / failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
}
// does exit() call iput(p->cwd) in a transaction?
void
exitiputtest(char *s)
{
int pid, xstatus;
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
if(mkdir("iputdir") < 0) {
printf("%s: mkdir failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(chdir("iputdir") < 0) {
printf("%s: child chdir failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(unlink("../iputdir") < 0) {
printf("%s: unlink ../iputdir failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
exit(0);
}
wait(&xstatus);
exit(xstatus);
}
// does the error path in open() for attempt to write a
// directory call iput() in a transaction?
// needs a hacked kernel that pauses just after the namei()
// call in sys_open():
// if((ip = namei(path)) == 0)
// return -1;
// {
// int i;
// for(i = 0; i < 10000; i++)
// yield();
// }
void
openiputtest(char *s)
{
int pid, xstatus;
2024-06-15 16:55:06 +02:00
if(mkdir("oidir") < 0) {
printf("%s: mkdir oidir failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
int fd = open("oidir", O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd >= 0) {
printf("%s: open directory for write succeeded\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
exit(0);
}
sleep(1);
2024-06-15 16:55:06 +02:00
if(unlink("oidir") != 0) {
printf("%s: unlink failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
wait(&xstatus);
exit(xstatus);
}
2006-09-07 15:23:41 +02:00
// simple file system tests
void
opentest(char *s)
2006-09-07 15:23:41 +02:00
{
int fd;
fd = open("echo", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: open echo failed!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
fd = open("doesnotexist", 0);
2024-06-15 16:55:06 +02:00
if(fd >= 0) {
printf("%s: open doesnotexist succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
void
writetest(char *s)
2006-09-07 15:23:41 +02:00
{
int fd;
int i;
2024-06-15 16:55:06 +02:00
enum { N = 100, SZ = 10 };
fd = open("small", O_CREATE | O_RDWR);
if(fd < 0) {
printf("%s: error: creat small failed!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
if(write(fd, "aaaaaaaaaa", SZ) != SZ) {
printf("%s: error: write aa %d new file failed\n", s, i);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(write(fd, "bbbbbbbbbb", SZ) != SZ) {
printf("%s: error: write bb %d new file failed\n", s, i);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
close(fd);
fd = open("small", O_RDONLY);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: error: open small failed!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
i = read(fd, buf, N * SZ * 2);
if(i != N * SZ * 2) {
printf("%s: read failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
2024-06-15 16:55:06 +02:00
if(unlink("small") < 0) {
printf("%s: unlink small failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
void
writebig(char *s)
2006-09-07 15:23:41 +02:00
{
int i, fd, n;
2024-06-15 16:55:06 +02:00
fd = open("big", O_CREATE | O_RDWR);
if(fd < 0) {
printf("%s: error: creat big failed!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
for(i = 0; i < MAXFILE; i++) {
((int *)buf)[0] = i;
if(write(fd, buf, BSIZE) != BSIZE) {
printf("%s: error: write big file failed\n", s, i);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
close(fd);
fd = open("big", O_RDONLY);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: error: open big failed!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
n = 0;
2024-06-15 16:55:06 +02:00
for(;;) {
i = read(fd, buf, BSIZE);
2024-06-15 16:55:06 +02:00
if(i == 0) {
if(n == MAXFILE - 1) {
printf("%s: read only %d blocks from big", s, n);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
break;
2024-06-15 16:55:06 +02:00
} else if(i != BSIZE) {
printf("%s: read failed %d\n", s, i);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(((int *)buf)[0] != n) {
printf("%s: read content of block %d is %d\n", s, n, ((int *)buf)[0]);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
n++;
}
close(fd);
2024-06-15 16:55:06 +02:00
if(unlink("big") < 0) {
printf("%s: unlink big failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
// many creates, followed by unlink test
2006-09-07 15:23:41 +02:00
void
createtest(char *s)
2006-09-07 15:23:41 +02:00
{
int i, fd;
2024-06-15 16:55:06 +02:00
enum { N = 52 };
2006-09-07 15:23:41 +02:00
char name[3];
2006-09-07 15:23:41 +02:00
name[0] = 'a';
name[2] = '\0';
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
2006-09-07 15:23:41 +02:00
name[1] = '0' + i;
2024-06-15 16:55:06 +02:00
fd = open(name, O_CREATE | O_RDWR);
2006-09-07 15:23:41 +02:00
close(fd);
}
name[0] = 'a';
name[2] = '\0';
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
2006-09-07 15:23:41 +02:00
name[1] = '0' + i;
unlink(name);
}
}
2024-06-15 16:55:06 +02:00
void
dirtest(char *s)
2006-09-07 15:23:41 +02:00
{
2024-06-15 16:55:06 +02:00
if(mkdir("dir0") < 0) {
printf("%s: mkdir failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("dir0") < 0) {
printf("%s: chdir dir0 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("..") < 0) {
printf("%s: chdir .. failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dir0") < 0) {
printf("%s: unlink dir0 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
void
exectest(char *s)
2006-09-07 15:23:41 +02:00
{
2024-06-15 16:55:06 +02:00
int fd, xstatus, pid;
2019-09-19 21:14:52 +02:00
char *echoargv[] = { "echo", "OK", 0 };
2024-06-15 16:55:06 +02:00
char buf[3];
2019-09-19 21:14:52 +02:00
unlink("echo-ok");
pid = fork();
if(pid < 0) {
2024-06-15 16:55:06 +02:00
printf("%s: fork failed\n", s);
exit(1);
2019-09-19 21:14:52 +02:00
}
if(pid == 0) {
close(1);
2024-06-15 16:55:06 +02:00
fd = open("echo-ok", O_CREATE | O_WRONLY);
2019-09-19 21:14:52 +02:00
if(fd < 0) {
printf("%s: create failed\n", s);
exit(1);
}
if(fd != 1) {
printf("%s: wrong fd\n", s);
exit(1);
}
2024-06-15 16:55:06 +02:00
if(exec("echo", echoargv) < 0) {
2019-09-19 21:14:52 +02:00
printf("%s: exec echo failed\n", s);
exit(1);
}
// won't get to here
}
2024-06-15 16:55:06 +02:00
if(wait(&xstatus) != pid) {
2019-09-19 21:14:52 +02:00
printf("%s: wait failed!\n", s);
}
if(xstatus != 0)
exit(xstatus);
fd = open("echo-ok", O_RDONLY);
if(fd < 0) {
printf("%s: open failed\n", s);
exit(1);
}
2024-06-15 16:55:06 +02:00
if(read(fd, buf, 2) != 2) {
2019-09-19 21:14:52 +02:00
printf("%s: read failed\n", s);
exit(1);
}
unlink("echo-ok");
if(buf[0] == 'O' && buf[1] == 'K')
exit(0);
else {
printf("%s: wrong output\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
2006-06-27 16:35:53 +02:00
// simple fork and pipe read/write
2006-06-27 16:35:53 +02:00
void
pipe1(char *s)
2006-06-27 16:35:53 +02:00
{
int fds[2], pid, xstatus;
2007-08-10 19:17:42 +02:00
int seq, i, n, cc, total;
2024-06-15 16:55:06 +02:00
enum { N = 5, SZ = 1033 };
if(pipe(fds) != 0) {
printf("%s: pipe() failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-08-29 21:06:37 +02:00
}
pid = fork();
2007-08-10 19:17:42 +02:00
seq = 0;
2024-06-15 16:55:06 +02:00
if(pid == 0) {
close(fds[0]);
2024-06-15 16:55:06 +02:00
for(n = 0; n < N; n++) {
for(i = 0; i < SZ; i++)
buf[i] = seq++;
2024-06-15 16:55:06 +02:00
if(write(fds[1], buf, SZ) != SZ) {
printf("%s: pipe1 oops 1\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
}
exit(0);
2024-06-15 16:55:06 +02:00
} else if(pid > 0) {
close(fds[1]);
total = 0;
cc = 1;
2024-06-15 16:55:06 +02:00
while((n = read(fds[0], buf, cc)) > 0) {
for(i = 0; i < n; i++) {
if((buf[i] & 0xff) != (seq++ & 0xff)) {
printf("%s: pipe1 oops 2\n", s);
return;
}
}
total += n;
cc = cc * 2;
if(cc > sizeof(buf))
cc = sizeof(buf);
2006-06-27 16:35:53 +02:00
}
2024-06-15 16:55:06 +02:00
if(total != N * SZ) {
printf("%s: pipe1 oops 3 total %d\n", total);
2019-09-11 16:04:40 +02:00
exit(1);
2011-08-31 02:50:19 +02:00
}
close(fds[0]);
wait(&xstatus);
exit(xstatus);
2006-08-29 21:06:37 +02:00
} else {
printf("%s: fork() failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-06-27 16:35:53 +02:00
}
}
2020-11-05 23:32:35 +01:00
// test if child is killed (status = -1)
void
killstatus(char *s)
{
int xst;
2024-06-15 16:55:06 +02:00
for(int i = 0; i < 100; i++) {
2020-11-05 23:32:35 +01:00
int pid1 = fork();
2024-06-15 16:55:06 +02:00
if(pid1 < 0) {
2020-11-05 23:32:35 +01:00
printf("%s: fork failed\n", s);
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid1 == 0) {
2020-11-06 01:00:37 +01:00
while(1) {
2020-11-05 23:32:35 +01:00
getpid();
}
exit(0);
}
sleep(1);
kill(pid1);
wait(&xst);
if(xst != -1) {
2024-06-15 16:55:06 +02:00
printf("%s: status should be -1\n", s);
exit(1);
2020-11-05 23:32:35 +01:00
}
}
exit(0);
}
// meant to be run w/ at most two CPUs
void
preempt(char *s)
{
int pid1, pid2, pid3;
int pfds[2];
pid1 = fork();
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
if(pid1 < 0) {
printf("%s: fork failed", s);
2019-09-11 16:04:40 +02:00
exit(1);
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
}
if(pid1 == 0)
2024-08-07 16:07:20 +02:00
for(;;) {}
2006-09-06 19:27:19 +02:00
pid2 = fork();
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
if(pid2 < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
}
if(pid2 == 0)
2024-08-07 16:07:20 +02:00
for(;;) {}
pipe(pfds);
pid3 = fork();
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
if(pid3 < 0) {
2024-06-15 16:55:06 +02:00
printf("%s: fork failed\n", s);
exit(1);
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
}
2024-06-15 16:55:06 +02:00
if(pid3 == 0) {
close(pfds[0]);
if(write(pfds[1], "x", 1) != 1)
printf("%s: preempt write error", s);
close(pfds[1]);
2024-08-07 16:07:20 +02:00
for(;;) {}
}
close(pfds[1]);
2024-06-15 16:55:06 +02:00
if(read(pfds[0], buf, sizeof(buf)) != 1) {
printf("%s: preempt read error", s);
return;
}
close(pfds[0]);
2019-08-27 19:13:03 +02:00
printf("kill... ");
kill(pid1);
kill(pid2);
kill(pid3);
2019-08-27 19:13:03 +02:00
printf("wait... ");
wait(0);
wait(0);
wait(0);
}
// try to find any races between exit and wait
void
exitwait(char *s)
{
int i, pid;
2024-06-15 16:55:06 +02:00
for(i = 0; i < 100; i++) {
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid) {
int xstate;
2024-06-15 16:55:06 +02:00
if(wait(&xstate) != pid) {
printf("%s: wait wrong pid\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
if(i != xstate) {
printf("%s: wait wrong exit status\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
} else {
exit(i);
}
}
}
// try to find races in the reparenting
// code that handles a parent exiting
// when it still has live children.
void
reparent(char *s)
{
int master_pid = getpid();
2024-06-15 16:55:06 +02:00
for(int i = 0; i < 200; i++) {
int pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid) {
if(wait(0) != pid) {
printf("%s: wait wrong pid\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
} else {
int pid2 = fork();
2024-06-15 16:55:06 +02:00
if(pid2 < 0) {
kill(master_pid);
2019-09-11 16:04:40 +02:00
exit(1);
}
exit(0);
}
}
exit(0);
}
// what if two children exit() at the same time?
void
twochildren(char *s)
{
2024-06-15 16:55:06 +02:00
for(int i = 0; i < 1000; i++) {
int pid1 = fork();
2024-06-15 16:55:06 +02:00
if(pid1 < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid1 == 0) {
exit(0);
} else {
int pid2 = fork();
2024-06-15 16:55:06 +02:00
if(pid2 < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid2 == 0) {
exit(0);
} else {
wait(0);
wait(0);
}
}
}
}
// concurrent forks to try to expose locking bugs.
void
forkfork(char *s)
{
2024-06-15 16:55:06 +02:00
enum { N = 2 };
for(int i = 0; i < N; i++) {
int pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
for(int j = 0; j < 200; j++) {
int pid1 = fork();
2024-06-15 16:55:06 +02:00
if(pid1 < 0) {
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid1 == 0) {
exit(0);
}
wait(0);
}
exit(0);
}
}
int xstatus;
2024-06-15 16:55:06 +02:00
for(int i = 0; i < N; i++) {
wait(&xstatus);
if(xstatus != 0) {
printf("%s: fork in child failed", s);
exit(1);
}
}
}
void
forkforkfork(char *s)
{
unlink("stopforking");
int pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
while(1) {
int fd = open("stopforking", 0);
2024-06-15 16:55:06 +02:00
if(fd >= 0) {
exit(0);
}
2024-06-15 16:55:06 +02:00
if(fork() < 0) {
close(open("stopforking", O_CREATE | O_RDWR));
}
}
exit(0);
}
sleep(20); // two seconds
2024-06-15 16:55:06 +02:00
close(open("stopforking", O_CREATE | O_RDWR));
wait(0);
sleep(10); // one second
}
// regression test. does reparent() violate the parent-then-child
// locking order when giving away a child to init, so that exit()
// deadlocks against init's wait()? also used to trigger a "panic:
// release" due to exit() releasing a different p->parent->lock than
// it acquired.
void
reparent2(char *s)
{
2024-06-15 16:55:06 +02:00
for(int i = 0; i < 800; i++) {
int pid1 = fork();
2024-06-15 16:55:06 +02:00
if(pid1 < 0) {
printf("fork failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid1 == 0) {
fork();
fork();
exit(0);
}
wait(0);
}
exit(0);
}
2019-09-19 21:22:45 +02:00
// allocate all mem, free it, and allocate again
2006-08-24 21:24:36 +02:00
void
mem(char *s)
2006-08-24 21:24:36 +02:00
{
void *m1, *m2;
2024-06-15 16:55:06 +02:00
int pid;
2006-08-24 21:24:36 +02:00
2024-06-15 16:55:06 +02:00
if((pid = fork()) == 0) {
2006-08-29 21:06:37 +02:00
m1 = 0;
2024-06-15 16:55:06 +02:00
while((m2 = malloc(10001)) != 0) {
*(char **)m2 = m1;
2006-08-29 21:06:37 +02:00
m1 = m2;
}
2024-06-15 16:55:06 +02:00
while(m1) {
m2 = *(char **)m1;
2006-08-29 21:06:37 +02:00
free(m1);
m1 = m2;
}
2024-06-15 16:55:06 +02:00
m1 = malloc(1024 * 20);
if(m1 == 0) {
printf("couldn't allocate mem?!!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-08-29 21:06:37 +02:00
}
2006-08-24 21:24:36 +02:00
free(m1);
exit(0);
2006-08-29 21:06:37 +02:00
} else {
int xstatus;
wait(&xstatus);
2024-06-15 16:55:06 +02:00
if(xstatus == -1) {
// probably page fault, so might be lazy lab,
// so OK.
exit(0);
}
exit(xstatus);
2006-08-24 21:24:36 +02:00
}
}
2006-09-07 15:23:41 +02:00
// More file system tests
// two processes write to the same file descriptor
// is the offset shared? does inode locking work?
void
sharedfd(char *s)
2006-09-07 15:23:41 +02:00
{
int fd, pid, i, n, nc, np;
2024-06-15 16:55:06 +02:00
enum { N = 1000, SZ = 10 };
char buf[SZ];
2006-09-07 15:23:41 +02:00
unlink("sharedfd");
2024-06-15 16:55:06 +02:00
fd = open("sharedfd", O_CREATE | O_RDWR);
if(fd < 0) {
printf("%s: cannot open sharedfd for writing", s);
exit(1);
2006-09-07 15:23:41 +02:00
}
pid = fork();
2024-06-15 16:55:06 +02:00
memset(buf, pid == 0 ? 'c' : 'p', sizeof(buf));
for(i = 0; i < N; i++) {
if(write(fd, buf, sizeof(buf)) != sizeof(buf)) {
printf("%s: write sharedfd failed\n", s);
exit(1);
2006-09-07 15:23:41 +02:00
}
}
if(pid == 0) {
exit(0);
} else {
int xstatus;
wait(&xstatus);
if(xstatus != 0)
exit(xstatus);
}
2024-06-15 16:55:06 +02:00
2006-09-07 15:23:41 +02:00
close(fd);
fd = open("sharedfd", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: cannot open sharedfd for reading\n", s);
exit(1);
2006-09-07 15:23:41 +02:00
}
nc = np = 0;
2024-06-15 16:55:06 +02:00
while((n = read(fd, buf, sizeof(buf))) > 0) {
for(i = 0; i < sizeof(buf); i++) {
2006-09-07 15:23:41 +02:00
if(buf[i] == 'c')
nc++;
if(buf[i] == 'p')
np++;
}
}
close(fd);
unlink("sharedfd");
2024-06-15 16:55:06 +02:00
if(nc == N * SZ && np == N * SZ) {
exit(0);
2011-08-31 02:50:19 +02:00
} else {
printf("%s: nc/np test fails\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2011-08-31 02:50:19 +02:00
}
2006-09-07 15:23:41 +02:00
}
// four processes write different files at the same
2006-09-07 15:23:41 +02:00
// time, to test block allocation.
void
fourfiles(char *s)
2006-09-07 15:23:41 +02:00
{
2024-06-15 16:55:06 +02:00
int fd, pid, i, j, n, total, pi;
char *names[] = { "f0", "f1", "f2", "f3" };
2006-09-07 15:23:41 +02:00
char *fname;
2024-06-15 16:55:06 +02:00
enum { N = 12, NCHILD = 4, SZ = 500 };
for(pi = 0; pi < NCHILD; pi++) {
fname = names[pi];
unlink(fname);
2006-09-07 15:23:41 +02:00
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2006-09-07 15:23:41 +02:00
2024-06-15 16:55:06 +02:00
if(pid == 0) {
fd = open(fname, O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("create failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
memset(buf, '0' + pi, SZ);
for(i = 0; i < N; i++) {
if((n = write(fd, buf, SZ)) != SZ) {
2019-08-27 19:13:03 +02:00
printf("write failed %d\n", n);
2019-09-11 16:04:40 +02:00
exit(1);
}
}
exit(0);
2006-09-07 15:23:41 +02:00
}
}
int xstatus;
2024-06-15 16:55:06 +02:00
for(pi = 0; pi < NCHILD; pi++) {
wait(&xstatus);
if(xstatus != 0)
exit(xstatus);
}
2006-09-07 15:23:41 +02:00
2024-06-15 16:55:06 +02:00
for(i = 0; i < NCHILD; i++) {
fname = names[i];
fd = open(fname, 0);
2006-09-07 15:23:41 +02:00
total = 0;
2024-06-15 16:55:06 +02:00
while((n = read(fd, buf, sizeof(buf))) > 0) {
for(j = 0; j < n; j++) {
if(buf[j] != '0' + i) {
printf("wrong char\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
total += n;
}
close(fd);
2024-06-15 16:55:06 +02:00
if(total != N * SZ) {
2019-08-27 19:13:03 +02:00
printf("wrong length %d\n", total);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
unlink(fname);
2006-09-07 15:23:41 +02:00
}
}
// four processes create and delete different files in same directory
2006-09-07 15:23:41 +02:00
void
createdelete(char *s)
2006-09-07 15:23:41 +02:00
{
2024-06-15 16:55:06 +02:00
enum { N = 20, NCHILD = 4 };
int pid, i, fd, pi;
2006-09-07 15:23:41 +02:00
char name[32];
2024-06-15 16:55:06 +02:00
for(pi = 0; pi < NCHILD; pi++) {
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
name[0] = 'p' + pi;
name[2] = '\0';
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
name[1] = '0' + i;
fd = open(name, O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: create failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
close(fd);
2024-06-15 16:55:06 +02:00
if(i > 0 && (i % 2) == 0) {
name[1] = '0' + (i / 2);
2024-06-15 16:55:06 +02:00
if(unlink(name) < 0) {
printf("%s: unlink failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
}
2006-09-07 15:23:41 +02:00
}
exit(0);
2006-09-07 15:23:41 +02:00
}
}
int xstatus;
2024-06-15 16:55:06 +02:00
for(pi = 0; pi < NCHILD; pi++) {
wait(&xstatus);
if(xstatus != 0)
exit(1);
}
2006-09-07 15:23:41 +02:00
name[0] = name[1] = name[2] = 0;
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
for(pi = 0; pi < NCHILD; pi++) {
name[0] = 'p' + pi;
name[1] = '0' + i;
fd = open(name, 0);
2024-06-15 16:55:06 +02:00
if((i == 0 || i >= N / 2) && fd < 0) {
printf("%s: oops createdelete %s didn't exist\n", s, name);
2019-09-11 16:04:40 +02:00
exit(1);
2024-06-15 16:55:06 +02:00
} else if((i >= 1 && i < N / 2) && fd >= 0) {
printf("%s: oops createdelete %s did exist\n", s, name);
2019-09-11 16:04:40 +02:00
exit(1);
}
if(fd >= 0)
close(fd);
2006-09-07 15:23:41 +02:00
}
}
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
for(pi = 0; pi < NCHILD; pi++) {
name[0] = 'p' + i;
name[1] = '0' + i;
unlink(name);
}
2006-09-07 15:23:41 +02:00
}
}
// can I unlink a file and still read it?
void
unlinkread(char *s)
2006-09-07 15:23:41 +02:00
{
enum { SZ = 5 };
2006-09-07 15:23:41 +02:00
int fd, fd1;
fd = open("unlinkread", O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: create unlinkread failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
write(fd, "hello", SZ);
2006-09-07 15:23:41 +02:00
close(fd);
fd = open("unlinkread", O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: open unlinkread failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("unlinkread") != 0) {
printf("%s: unlink unlinkread failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
fd1 = open("unlinkread", O_CREATE | O_RDWR);
write(fd1, "yyy", 3);
close(fd1);
2024-06-15 16:55:06 +02:00
if(read(fd, buf, sizeof(buf)) != SZ) {
printf("%s: unlinkread read failed", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(buf[0] != 'h') {
printf("%s: unlinkread wrong data\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(write(fd, buf, 10) != 10) {
printf("%s: unlinkread write failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
unlink("unlinkread");
}
void
linktest(char *s)
2006-09-07 15:23:41 +02:00
{
enum { SZ = 5 };
2006-09-07 15:23:41 +02:00
int fd;
unlink("lf1");
unlink("lf2");
2024-06-15 16:55:06 +02:00
fd = open("lf1", O_CREATE | O_RDWR);
if(fd < 0) {
printf("%s: create lf1 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(write(fd, "hello", SZ) != SZ) {
printf("%s: write lf1 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
2024-06-15 16:55:06 +02:00
if(link("lf1", "lf2") < 0) {
printf("%s: link lf1 lf2 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
unlink("lf1");
2024-06-15 16:55:06 +02:00
if(open("lf1", 0) >= 0) {
printf("%s: unlinked lf1 but it is still there!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
fd = open("lf2", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: open lf2 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(read(fd, buf, sizeof(buf)) != SZ) {
printf("%s: read lf2 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
2024-06-15 16:55:06 +02:00
if(link("lf2", "lf2") >= 0) {
printf("%s: link lf2 lf2 succeeded! oops\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
unlink("lf2");
2024-06-15 16:55:06 +02:00
if(link("lf2", "lf1") >= 0) {
printf("%s: link non-existent succeeded! oops\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(link(".", "lf1") >= 0) {
printf("%s: link . lf1 succeeded! oops\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
// test concurrent create/link/unlink of the same file
2006-09-07 15:23:41 +02:00
void
concreate(char *s)
2006-09-07 15:23:41 +02:00
{
enum { N = 40 };
2006-09-07 15:23:41 +02:00
char file[3];
2024-06-15 16:55:06 +02:00
int i, pid, n, fd;
char fa[N];
2006-09-07 15:23:41 +02:00
struct {
2024-06-15 16:55:06 +02:00
u16 inum;
char name[DIRSIZ];
2006-09-07 15:23:41 +02:00
} de;
file[0] = 'C';
file[2] = '\0';
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
2006-09-07 15:23:41 +02:00
file[1] = '0' + i;
unlink(file);
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid && (i % 3) == 1) {
2006-09-07 15:23:41 +02:00
link("C0", file);
2024-06-15 16:55:06 +02:00
} else if(pid == 0 && (i % 5) == 1) {
2006-09-07 15:23:41 +02:00
link("C0", file);
} else {
fd = open(file, O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
2019-08-27 19:13:03 +02:00
printf("concreate create %s failed\n", file);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
}
if(pid == 0) {
exit(0);
} else {
int xstatus;
wait(&xstatus);
if(xstatus != 0)
exit(1);
}
2006-09-07 15:23:41 +02:00
}
memset(fa, 0, sizeof(fa));
fd = open(".", 0);
n = 0;
2024-06-15 16:55:06 +02:00
while(read(fd, &de, sizeof(de)) > 0) {
2006-09-07 15:23:41 +02:00
if(de.inum == 0)
continue;
2024-06-15 16:55:06 +02:00
if(de.name[0] == 'C' && de.name[2] == '\0') {
2006-09-07 15:23:41 +02:00
i = de.name[1] - '0';
2024-06-15 16:55:06 +02:00
if(i < 0 || i >= sizeof(fa)) {
printf("%s: concreate weird file %s\n", s, de.name);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(fa[i]) {
printf("%s: concreate duplicate file %s\n", s, de.name);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
fa[i] = 1;
n++;
}
}
close(fd);
2024-06-15 16:55:06 +02:00
if(n != N) {
printf("%s: concreate not enough files in directory listing\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
2006-09-07 15:23:41 +02:00
file[1] = '0' + i;
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(((i % 3) == 0 && pid == 0) || ((i % 3) == 1 && pid != 0)) {
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
} else {
unlink(file);
unlink(file);
unlink(file);
unlink(file);
unlink(file);
unlink(file);
}
if(pid == 0)
exit(0);
else
wait(0);
2006-09-07 15:23:41 +02:00
}
}
// another concurrent link/unlink/create test,
// to look for deadlocks.
void
linkunlink(char *s)
{
int pid, i;
unlink("x");
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
unsigned int x = (pid ? 1 : 97);
2024-06-15 16:55:06 +02:00
for(i = 0; i < 100; i++) {
x = x * 1103515245 + 12345;
2024-06-15 16:55:06 +02:00
if((x % 3) == 0) {
close(open("x", O_RDWR | O_CREATE));
2024-06-15 16:55:06 +02:00
} else if((x % 3) == 1) {
link("cat", "x");
} else {
unlink("x");
}
}
if(pid)
wait(0);
else
exit(0);
}
2006-09-07 15:23:41 +02:00
void
subdir(char *s)
2006-09-07 15:23:41 +02:00
{
int fd, cc;
unlink("ff");
2024-06-15 16:55:06 +02:00
if(mkdir("dd") != 0) {
printf("%s: mkdir dd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
fd = open("dd/ff", O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: create dd/ff failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
write(fd, "ff", 2);
close(fd);
2024-06-15 16:55:06 +02:00
if(unlink("dd") >= 0) {
printf("%s: unlink dd (non-empty dir) succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-22 04:21:22 +02:00
}
2006-09-07 15:23:41 +02:00
2024-06-15 16:55:06 +02:00
if(mkdir("/dd/dd") != 0) {
printf("subdir mkdir dd/dd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
fd = open("dd/dd/ff", O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: create dd/dd/ff failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
write(fd, "FF", 2);
close(fd);
fd = open("dd/dd/../ff", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: open dd/dd/../ff failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
cc = read(fd, buf, sizeof(buf));
2024-06-15 16:55:06 +02:00
if(cc != 2 || buf[0] != 'f') {
printf("%s: dd/dd/../ff wrong content\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
2024-06-15 16:55:06 +02:00
if(link("dd/dd/ff", "dd/dd/ffff") != 0) {
printf("link dd/dd/ff dd/dd/ffff failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dd/dd/ff") != 0) {
printf("%s: unlink dd/dd/ff failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(open("dd/dd/ff", O_RDONLY) >= 0) {
printf("%s: open (unlinked) dd/dd/ff succeeded\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-22 04:21:22 +02:00
}
2006-09-07 15:23:41 +02:00
2024-06-15 16:55:06 +02:00
if(chdir("dd") != 0) {
printf("%s: chdir dd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("dd/../../dd") != 0) {
printf("%s: chdir dd/../../dd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("dd/../../../dd") != 0) {
printf("chdir dd/../../dd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-22 04:21:22 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("./..") != 0) {
printf("%s: chdir ./.. failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
fd = open("dd/dd/ffff", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: open dd/dd/ffff failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(read(fd, buf, sizeof(buf)) != 2) {
printf("%s: read dd/dd/ffff wrong len\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
2024-06-15 16:55:06 +02:00
if(open("dd/dd/ff", O_RDONLY) >= 0) {
printf("%s: open (unlinked) dd/dd/ff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(open("dd/ff/ff", O_CREATE | O_RDWR) >= 0) {
printf("%s: create dd/ff/ff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(open("dd/xx/ff", O_CREATE | O_RDWR) >= 0) {
printf("%s: create dd/xx/ff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(open("dd", O_CREATE) >= 0) {
printf("%s: create dd succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(open("dd", O_RDWR) >= 0) {
printf("%s: open dd rdwr succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(open("dd", O_WRONLY) >= 0) {
printf("%s: open dd wronly succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(link("dd/ff/ff", "dd/dd/xx") == 0) {
printf("%s: link dd/ff/ff dd/dd/xx succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(link("dd/xx/ff", "dd/dd/xx") == 0) {
printf("%s: link dd/xx/ff dd/dd/xx succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(link("dd/ff", "dd/dd/ffff") == 0) {
printf("%s: link dd/ff dd/dd/ffff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(mkdir("dd/ff/ff") == 0) {
printf("%s: mkdir dd/ff/ff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(mkdir("dd/xx/ff") == 0) {
printf("%s: mkdir dd/xx/ff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(mkdir("dd/dd/ffff") == 0) {
printf("%s: mkdir dd/dd/ffff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dd/xx/ff") == 0) {
printf("%s: unlink dd/xx/ff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dd/ff/ff") == 0) {
printf("%s: unlink dd/ff/ff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("dd/ff") == 0) {
printf("%s: chdir dd/ff succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("dd/xx") == 0) {
printf("%s: chdir dd/xx succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dd/dd/ffff") != 0) {
printf("%s: unlink dd/dd/ff failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dd/ff") != 0) {
printf("%s: unlink dd/ff failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dd") == 0) {
printf("%s: unlink non-empty dd succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-22 04:21:22 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dd/dd") < 0) {
printf("%s: unlink dd/dd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-22 04:21:22 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dd") < 0) {
printf("%s: unlink dd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-22 04:21:22 +02:00
}
2006-09-07 15:23:41 +02:00
}
// test writes that are larger than the log.
void
bigwrite(char *s)
{
int fd, sz;
unlink("bigwrite");
2024-06-15 16:55:06 +02:00
for(sz = 499; sz < (MAXOPBLOCKS + 2) * BSIZE; sz += 471) {
fd = open("bigwrite", O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: cannot create bigwrite\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
int i;
2024-06-15 16:55:06 +02:00
for(i = 0; i < 2; i++) {
int cc = write(fd, buf, sz);
2024-06-15 16:55:06 +02:00
if(cc != sz) {
printf("%s: write(%d) ret %d\n", s, sz, cc);
2019-09-11 16:04:40 +02:00
exit(1);
}
}
close(fd);
unlink("bigwrite");
}
}
2006-09-07 15:23:41 +02:00
void
bigfile(char *s)
2006-09-07 15:23:41 +02:00
{
2024-06-15 16:55:06 +02:00
enum { N = 20, SZ = 600 };
2006-09-07 15:23:41 +02:00
int fd, i, total, cc;
unlink("bigfile.dat");
fd = open("bigfile.dat", O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: cannot create bigfile", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
memset(buf, i, SZ);
2024-06-15 16:55:06 +02:00
if(write(fd, buf, SZ) != SZ) {
printf("%s: write bigfile failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
}
close(fd);
fd = open("bigfile.dat", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: cannot open bigfile\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
total = 0;
2024-06-15 16:55:06 +02:00
for(i = 0;; i++) {
cc = read(fd, buf, SZ / 2);
if(cc < 0) {
printf("%s: read bigfile failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
if(cc == 0)
break;
2024-06-15 16:55:06 +02:00
if(cc != SZ / 2) {
printf("%s: short read bigfile\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(buf[0] != i / 2 || buf[SZ / 2 - 1] != i / 2) {
printf("%s: read bigfile wrong data\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
total += cc;
}
close(fd);
2024-06-15 16:55:06 +02:00
if(total != N * SZ) {
printf("%s: read bigfile wrong total\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
unlink("bigfile.dat");
2006-09-07 15:23:41 +02:00
}
void
fourteen(char *s)
2006-09-07 15:23:41 +02:00
{
int fd;
2007-08-10 19:53:09 +02:00
// DIRSIZ is 14.
2006-09-07 15:23:41 +02:00
2024-06-15 16:55:06 +02:00
if(mkdir("12345678901234") != 0) {
printf("%s: mkdir 12345678901234 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(mkdir("12345678901234/123456789012345") != 0) {
printf("%s: mkdir 12345678901234/123456789012345 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
fd = open("123456789012345/123456789012345/123456789012345", O_CREATE);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: create 123456789012345/123456789012345/123456789012345 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
fd = open("12345678901234/12345678901234/12345678901234", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: open 12345678901234/12345678901234/12345678901234 failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
close(fd);
2024-06-15 16:55:06 +02:00
if(mkdir("12345678901234/12345678901234") == 0) {
printf("%s: mkdir 12345678901234/12345678901234 succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
2024-06-15 16:55:06 +02:00
if(mkdir("123456789012345/12345678901234") == 0) {
printf("%s: mkdir 12345678901234/123456789012345 succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2006-09-07 15:23:41 +02:00
}
// clean up
unlink("123456789012345/12345678901234");
unlink("12345678901234/12345678901234");
unlink("12345678901234/12345678901234/12345678901234");
unlink("123456789012345/123456789012345/123456789012345");
unlink("12345678901234/123456789012345");
unlink("12345678901234");
2006-09-07 15:23:41 +02:00
}
2007-08-10 19:53:09 +02:00
void
rmdot(char *s)
2007-08-10 19:53:09 +02:00
{
2024-06-15 16:55:06 +02:00
if(mkdir("dots") != 0) {
printf("%s: mkdir dots failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-10 19:53:09 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("dots") != 0) {
printf("%s: chdir dots failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-10 19:53:09 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink(".") == 0) {
printf("%s: rm . worked!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-10 19:53:09 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("..") == 0) {
printf("%s: rm .. worked!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-10 19:53:09 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("/") != 0) {
printf("%s: chdir / failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-10 19:53:09 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dots/.") == 0) {
printf("%s: unlink dots/. worked!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-10 19:53:09 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dots/..") == 0) {
printf("%s: unlink dots/.. worked!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-10 19:53:09 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dots") != 0) {
printf("%s: unlink dots failed!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-10 19:53:09 +02:00
}
}
2007-08-24 16:56:17 +02:00
void
dirfile(char *s)
2007-08-24 16:56:17 +02:00
{
int fd;
fd = open("dirfile", O_CREATE);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: create dirfile failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
close(fd);
2024-06-15 16:55:06 +02:00
if(chdir("dirfile") == 0) {
printf("%s: chdir dirfile succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
fd = open("dirfile/xx", 0);
2024-06-15 16:55:06 +02:00
if(fd >= 0) {
printf("%s: create dirfile/xx succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
fd = open("dirfile/xx", O_CREATE);
2024-06-15 16:55:06 +02:00
if(fd >= 0) {
printf("%s: create dirfile/xx succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
2024-06-15 16:55:06 +02:00
if(mkdir("dirfile/xx") == 0) {
printf("%s: mkdir dirfile/xx succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dirfile/xx") == 0) {
printf("%s: unlink dirfile/xx succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
2024-06-15 16:55:06 +02:00
if(link("README", "dirfile/xx") == 0) {
printf("%s: link to dirfile/xx succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
2024-06-15 16:55:06 +02:00
if(unlink("dirfile") != 0) {
printf("%s: unlink dirfile failed!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
fd = open(".", O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd >= 0) {
printf("%s: open . for writing succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
fd = open(".", 0);
2024-06-15 16:55:06 +02:00
if(write(fd, "x", 1) > 0) {
printf("%s: write . succeeded!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
close(fd);
}
// test that iput() is called at the end of _namei().
// also tests empty file names.
2007-08-24 16:56:17 +02:00
void
iref(char *s)
2007-08-24 16:56:17 +02:00
{
int i, fd;
2024-06-15 16:55:06 +02:00
for(i = 0; i < NINODE + 1; i++) {
if(mkdir("irefd") != 0) {
printf("%s: mkdir irefd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
2024-06-15 16:55:06 +02:00
if(chdir("irefd") != 0) {
printf("%s: chdir irefd failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 16:56:17 +02:00
}
mkdir("");
link("README", "");
fd = open("", O_CREATE);
if(fd >= 0)
close(fd);
fd = open("xx", O_CREATE);
if(fd >= 0)
close(fd);
unlink("xx");
}
// clean up
2024-06-15 16:55:06 +02:00
for(i = 0; i < NINODE + 1; i++) {
chdir("..");
unlink("irefd");
}
2007-08-24 16:56:17 +02:00
chdir("/");
}
2007-08-24 22:20:23 +02:00
// test that fork fails gracefully
// the forktest binary also does this, but it runs out of proc entries first.
// inside the bigger usertests binary, we run out of memory first.
void
forktest(char *s)
2007-08-24 22:20:23 +02:00
{
2024-06-15 16:55:06 +02:00
enum { N = 1000 };
2007-08-24 22:20:23 +02:00
int n, pid;
2024-06-15 16:55:06 +02:00
for(n = 0; n < N; n++) {
2007-08-24 22:20:23 +02:00
pid = fork();
if(pid < 0)
break;
if(pid == 0)
exit(0);
2007-08-24 22:20:23 +02:00
}
2024-06-15 16:55:06 +02:00
if(n == 0) {
printf("%s: no fork at all!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
}
2024-06-15 16:55:06 +02:00
if(n == N) {
printf("%s: fork claimed to work 1000 times!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 22:20:23 +02:00
}
2024-06-15 16:55:06 +02:00
for(; n > 0; n--) {
if(wait(0) < 0) {
printf("%s: wait stopped early\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 22:20:23 +02:00
}
}
2024-06-15 16:55:06 +02:00
if(wait(0) != -1) {
printf("%s: wait got too many\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2007-08-24 22:20:23 +02:00
}
}
void
sbrkbasic(char *s)
{
2024-06-15 16:55:06 +02:00
enum { TOOMUCH = 1024 * 1024 * 1024 };
int i, pid, xstatus;
char *c, *a, *b;
// does sbrk() return the expected failure value?
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed in sbrkbasic\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
a = sbrk(TOOMUCH);
2024-06-15 16:55:06 +02:00
if(a == (char *)0xffffffffffffffffL) {
// it's OK if this fails.
exit(0);
}
2024-06-15 16:55:06 +02:00
for(b = a; b < a + TOOMUCH; b += 4096) {
*b = 99;
}
2024-06-15 16:55:06 +02:00
// we should not get here! either sbrk(TOOMUCH)
// should have failed, or (with lazy allocation)
// a pagefault should have killed this process.
exit(1);
}
wait(&xstatus);
2024-06-15 16:55:06 +02:00
if(xstatus == 1) {
printf("%s: too much memory allocated!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
// can one sbrk() less than a page?
a = sbrk(0);
2024-06-15 16:55:06 +02:00
for(i = 0; i < 5000; i++) {
b = sbrk(1);
2024-06-15 16:55:06 +02:00
if(b != a) {
2021-01-03 14:07:12 +01:00
printf("%s: sbrk test failed %d %x %x\n", s, i, a, b);
2019-09-11 16:04:40 +02:00
exit(1);
}
*b = 1;
a = b + 1;
}
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: sbrk test fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
c = sbrk(1);
c = sbrk(1);
2024-06-15 16:55:06 +02:00
if(c != a + 1) {
printf("%s: sbrk test failed post-fork\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
if(pid == 0)
exit(0);
wait(&xstatus);
exit(xstatus);
}
void
sbrkmuch(char *s)
{
2024-06-15 16:55:06 +02:00
enum { BIG = 100 * 1024 * 1024 };
char *c, *oldbrk, *a, *lastaddr, *p;
2024-06-15 16:55:06 +02:00
u64 amt;
oldbrk = sbrk(0);
// can one grow address space to something big?
a = sbrk(0);
2024-05-24 11:26:40 +02:00
amt = BIG - (u64)a;
p = sbrk(amt);
2024-06-15 16:55:06 +02:00
if(p != a) {
printf("%s: sbrk test failed to grow big address space; enough phys mem?\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
// touch each page to make sure it exists.
char *eee = sbrk(0);
for(char *pp = a; pp < eee; pp += 4096)
*pp = 1;
2024-06-15 16:55:06 +02:00
lastaddr = (char *)(BIG - 1);
*lastaddr = 99;
// can one de-allocate?
a = sbrk(0);
c = sbrk(-PGSIZE);
2024-06-15 16:55:06 +02:00
if(c == (char *)0xffffffffffffffffL) {
printf("%s: sbrk could not deallocate\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
c = sbrk(0);
2024-06-15 16:55:06 +02:00
if(c != a - PGSIZE) {
printf("%s: sbrk deallocation produced wrong address, a %x c %x\n", s, a, c);
2019-09-11 16:04:40 +02:00
exit(1);
}
// can one re-allocate that page?
a = sbrk(0);
c = sbrk(PGSIZE);
2024-06-15 16:55:06 +02:00
if(c != a || sbrk(0) != a + PGSIZE) {
printf("%s: sbrk re-allocation failed, a %x c %x\n", s, a, c);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(*lastaddr == 99) {
// should be zero
printf("%s: sbrk de-allocation didn't really deallocate\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
a = sbrk(0);
c = sbrk(-(sbrk(0) - oldbrk));
2024-06-15 16:55:06 +02:00
if(c != a) {
printf("%s: sbrk downsize failed, a %x c %x\n", s, a, c);
2019-09-11 16:04:40 +02:00
exit(1);
}
}
// can we read the kernel's memory?
void
kernmem(char *s)
{
char *a;
2024-06-15 16:55:06 +02:00
int pid;
2024-06-15 16:55:06 +02:00
for(a = (char *)(KERNBASE); a < (char *)(KERNBASE + 2000000); a += 50000) {
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
printf("%s: oops could read %x = %x\n", s, a, *a);
2019-09-11 16:04:40 +02:00
exit(1);
}
int xstatus;
wait(&xstatus);
2024-06-15 16:55:06 +02:00
if(xstatus != -1) // did kernel kill child?
exit(1);
}
}
// user code should not be able to write to addresses above MAXVA.
void
MAXVAplus(char *s)
{
2024-05-24 11:26:40 +02:00
volatile u64 a = MAXVA;
2024-06-15 16:55:06 +02:00
for(; a != 0; a <<= 1) {
int pid;
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
*(char *)a = 99;
printf("%s: oops wrote %x\n", s, a);
exit(1);
}
int xstatus;
wait(&xstatus);
2024-06-15 16:55:06 +02:00
if(xstatus != -1) // did kernel kill child?
exit(1);
}
}
// if we run the system out of memory, does it clean up the last
// failed allocation?
void
sbrkfail(char *s)
{
2024-06-15 16:55:06 +02:00
enum { BIG = 100 * 1024 * 1024 };
int i, xstatus;
int fds[2];
char scratch;
char *c, *a;
2024-06-15 16:55:06 +02:00
int pids[10];
int pid;
if(pipe(fds) != 0) {
printf("%s: pipe() failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
for(i = 0; i < sizeof(pids) / sizeof(pids[0]); i++) {
if((pids[i] = fork()) == 0) {
// allocate a lot of memory
2024-05-24 11:26:40 +02:00
sbrk(BIG - (u64)sbrk(0));
write(fds[1], "x", 1);
// sit around until killed
2024-06-15 16:55:06 +02:00
for(;;)
sleep(1000);
}
2010-09-01 06:41:25 +02:00
if(pids[i] != -1)
read(fds[0], &scratch, 1);
}
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times. The x86-64 doesn't just add two levels to page tables to support 64 bit addresses, but is a different processor. For example, calling conventions, system calls, and segmentation are different from 32-bit x86. Segmentation is basically gone, but gs/fs in combination with MSRs can be used to hold a per-core pointer. In general, x86-64 is more straightforward than 32-bit x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch. A summary of the changes is as follows: - Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu), because xv6's boot loader doesn't understand 64bit ELF files. And, we don't care anymore about booting. - Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img, bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than MAXFILE! - Update gdb.tmpl to be for i386 or x86-64 - Console/printf: use stdarg.h and treat 64-bit addresses different from ints (32-bit) - Update elfhdr to be 64 bit - entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page table in 32-bit mode before switching to 64-bit mode, share code for entering boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state mostly disappear.) - exec.c: fix passing argv (64-bit now instead of 32-bit). - initcode.c: use syscall instead of int. - kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of address space! - proc.c: initial return is through new syscall path instead of trapret. - proc.h: update struct cpu to have some scratch space since syscall saves less state than int, update struct context to reflect x86-64 calling conventions. - swtch: simplify for x86-64 calling conventions. - syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are passed through registers), and fetchaddr to read a 64-bit value from user space. - sysfile: update to handle pointers from user space (e.g., sys_exec), which are 64 bits. - trap.c: no special trap vector for sys calls, because x86-64 has a different plan for system calls. - trapasm: one plan for syscalls and one plan for traps (interrupt and exceptions). On x86-64, the kernel is responsible for switching user/kernel stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR GS_KERN_BASE to point to the core's cpu structure (using swapgs). - types.h: add uint64, and change pde_t to uint64 - usertests: exit() when fork fails, which helped in tracking down one of the bugs in the switch from 32-bit to 64-bit - vectors: update to make them 64 bits - vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task segment to set kernel stack for interrupts (but simpler than in 32-bit mode), add an extra argument to freevm (size of user part of address space) to avoid checking all entries till KERNBASE (there are MANY TB before the top 1TB). - x86: update trapframe to have 64-bit entries, which is what the processor pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr, which needs the gcc directives packed and aligned. TODO: - use int32 instead of int? - simplify curproc(). xv6 has per-cpu state again, but this time it must have it. - avoid repetition in walkpgdir - fix validateint() in usertests.c - fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 14:24:42 +02:00
// if those failed allocations freed up the pages they did allocate,
// we'll be able to allocate here
c = sbrk(PGSIZE);
2024-06-15 16:55:06 +02:00
for(i = 0; i < sizeof(pids) / sizeof(pids[0]); i++) {
2010-09-01 06:41:25 +02:00
if(pids[i] == -1)
continue;
kill(pids[i]);
wait(0);
}
2024-06-15 16:55:06 +02:00
if(c == (char *)0xffffffffffffffffL) {
printf("%s: failed sbrk leaked memory\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
// test running fork with the above allocated page
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
// allocate a lot of memory.
// this should produce a page fault,
// and thus not complete.
a = sbrk(0);
2024-06-15 16:55:06 +02:00
sbrk(10 * BIG);
int n = 0;
2024-06-15 16:55:06 +02:00
for(i = 0; i < 10 * BIG; i += PGSIZE) {
n += *(a + i);
}
// print n so the compiler doesn't optimize away
// the for loop.
printf("%s: allocate a lot of memory succeeded %d\n", s, n);
2019-09-11 16:04:40 +02:00
exit(1);
}
wait(&xstatus);
if(xstatus != -1 && xstatus != 2)
exit(1);
}
// test reads/writes from/to allocated memory
void
sbrkarg(char *s)
{
char *a;
2024-06-15 16:55:06 +02:00
int fd, n;
a = sbrk(PGSIZE);
2024-06-15 16:55:06 +02:00
fd = open("sbrk", O_CREATE | O_WRONLY);
unlink("sbrk");
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: open sbrk failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
2024-06-15 16:55:06 +02:00
if((n = write(fd, a, PGSIZE)) < 0) {
printf("%s: write sbrk failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
close(fd);
// test writes to allocated memory
a = sbrk(PGSIZE);
2024-06-15 16:55:06 +02:00
if(pipe((int *)a) != 0) {
printf("%s: pipe() failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2024-06-15 16:55:06 +02:00
}
}
void
validatetest(char *s)
{
int hi;
2024-05-24 11:26:40 +02:00
u64 p;
2024-06-15 16:55:06 +02:00
hi = 1100 * 1024;
for(p = 0; p <= (u32)hi; p += PGSIZE) {
// try to crash the kernel by passing in a bad string pointer
2024-06-15 16:55:06 +02:00
if(link("nosuchfile", (char *)p) != -1) {
printf("%s: link should not succeed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
}
}
// does uninitialized data start out zero?
char uninit[10000];
void
bsstest(char *s)
{
int i;
2024-06-15 16:55:06 +02:00
for(i = 0; i < sizeof(uninit); i++) {
if(uninit[i] != '\0') {
printf("%s: bss test failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
}
}
// does exec return an error if the arguments
// are larger than a page? or does it write
// below the stack and wreck the instructions/data?
2010-09-20 12:00:22 +02:00
void
bigargtest(char *s)
2010-09-20 12:00:22 +02:00
{
int pid, fd, xstatus;
2010-09-20 12:00:22 +02:00
unlink("bigarg-ok");
2010-09-20 12:00:22 +02:00
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid == 0) {
static char *args[MAXARG];
2024-06-15 16:55:06 +02:00
int i;
for(i = 0; i < MAXARG - 1; i++)
args[i] = "bigargs test: failed\n "
" "
" ";
args[MAXARG - 1] = 0;
2010-09-20 12:00:22 +02:00
exec("echo", args);
fd = open("bigarg-ok", O_CREATE);
close(fd);
exit(0);
2024-06-15 16:55:06 +02:00
} else if(pid < 0) {
printf("%s: bigargtest: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2010-09-20 12:00:22 +02:00
}
2024-06-15 16:55:06 +02:00
wait(&xstatus);
if(xstatus != 0)
exit(xstatus);
fd = open("bigarg-ok", 0);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: bigarg test failed!\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
}
close(fd);
2010-09-20 12:00:22 +02:00
}
// what happens when the file system runs out of blocks?
// answer: balloc panics, so this test is not useful.
void
fsfull()
{
int nfiles;
int fsblocks = 0;
2019-08-27 19:13:03 +02:00
printf("fsfull test\n");
2024-06-15 16:55:06 +02:00
for(nfiles = 0;; nfiles++) {
char name[64];
name[0] = 'f';
name[1] = '0' + nfiles / 1000;
name[2] = '0' + (nfiles % 1000) / 100;
name[3] = '0' + (nfiles % 100) / 10;
name[4] = '0' + (nfiles % 10);
name[5] = '\0';
printf("writing %s\n", name);
2024-06-15 16:55:06 +02:00
int fd = open(name, O_CREATE | O_RDWR);
if(fd < 0) {
printf("open %s failed\n", name);
break;
}
int total = 0;
2024-06-15 16:55:06 +02:00
while(1) {
int cc = write(fd, buf, BSIZE);
if(cc < BSIZE)
break;
total += cc;
fsblocks++;
}
printf("wrote %d bytes\n", total);
close(fd);
if(total == 0)
break;
}
2024-06-15 16:55:06 +02:00
while(nfiles >= 0) {
char name[64];
name[0] = 'f';
name[1] = '0' + nfiles / 1000;
name[2] = '0' + (nfiles % 1000) / 100;
name[3] = '0' + (nfiles % 100) / 10;
name[4] = '0' + (nfiles % 10);
name[5] = '\0';
unlink(name);
nfiles--;
}
2019-08-27 19:13:03 +02:00
printf("fsfull test finished\n");
}
2024-06-15 16:55:06 +02:00
void
argptest(char *s)
2016-09-26 13:54:02 +02:00
{
int fd;
fd = open("init", O_RDONLY);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: open failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2016-09-26 13:54:02 +02:00
}
read(fd, sbrk(0) - 1, -1);
close(fd);
}
2019-07-23 18:17:17 +02:00
// check that there's an invalid page beneath
// the user stack, to catch stack overflow.
2019-07-23 00:08:52 +02:00
void
stacktest(char *s)
2019-07-23 00:08:52 +02:00
{
int pid;
int xstatus;
2024-06-15 16:55:06 +02:00
2019-07-23 00:08:52 +02:00
pid = fork();
if(pid == 0) {
2024-06-15 16:55:06 +02:00
char *sp = (char *)r_sp();
sp -= PGSIZE;
2019-07-23 18:17:17 +02:00
// the *sp should cause a trap.
printf("%s: stacktest: read below stack %p\n", s, *sp);
2019-09-11 16:04:40 +02:00
exit(1);
2024-06-15 16:55:06 +02:00
} else if(pid < 0) {
printf("%s: fork failed\n", s);
2019-09-11 16:04:40 +02:00
exit(1);
2019-07-23 00:08:52 +02:00
}
wait(&xstatus);
2024-06-15 16:55:06 +02:00
if(xstatus == -1) // kernel killed child?
exit(0);
else
exit(xstatus);
}
// check that writes to text segment fault
void
2022-08-23 17:21:26 +02:00
textwrite(char *s)
{
int pid;
int xstatus;
2024-06-15 16:55:06 +02:00
pid = fork();
if(pid == 0) {
2024-06-15 16:55:06 +02:00
volatile int *addr = (int *)0;
*addr = 10;
exit(1);
2024-06-15 16:55:06 +02:00
} else if(pid < 0) {
printf("%s: fork failed\n", s);
exit(1);
}
wait(&xstatus);
2024-06-15 16:55:06 +02:00
if(xstatus == -1) // kernel killed child?
exit(0);
else
exit(xstatus);
}
// regression test. copyin(), copyout(), and copyinstr() used to cast
2024-05-24 11:26:40 +02:00
// the virtual page address to u32, which (with certain wild system
// call arguments) resulted in a kernel page faults.
2024-06-15 16:55:06 +02:00
void *big = (void *)0xeaeb0b5b00002f5e;
void
pgbug(char *s)
{
char *argv[1];
argv[0] = 0;
exec(big, argv);
pipe(big);
2019-09-20 16:27:03 +02:00
exit(0);
}
// regression test. does the kernel panic if a process sbrk()s its
// size to be less than a page, or zero, or reduces the break by an
// amount too small to cause a page to be freed?
void
sbrkbugs(char *s)
{
int pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
int sz = (u64)sbrk(0);
// free all user memory; there used to be a bug that
// would not adjust p->sz correctly in this case,
// causing exit() to panic.
sbrk(-sz);
// user page fault here.
exit(0);
}
wait(0);
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
int sz = (u64)sbrk(0);
// set the break to somewhere in the very first
// page; there used to be a bug that would incorrectly
// free the first page.
sbrk(-(sz - 3500));
exit(0);
}
wait(0);
pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
// set the break in the middle of a page.
2024-06-15 16:55:06 +02:00
sbrk((10 * 4096 + 2048) - (u64)sbrk(0));
// reduce the break a bit, but not enough to
// cause a page to be freed. this used to cause
// a panic.
sbrk(-10);
exit(0);
}
wait(0);
exit(0);
}
// if process size was somewhat more than a page boundary, and then
// shrunk to be somewhat less than that page boundary, can the kernel
// still copyin() from addresses in the last page?
void
sbrklast(char *s)
{
2024-06-15 16:55:06 +02:00
u64 top = (u64)sbrk(0);
if((top % 4096) != 0)
sbrk(4096 - (top % 4096));
sbrk(4096);
sbrk(10);
sbrk(-20);
2024-06-15 16:55:06 +02:00
top = (u64)sbrk(0);
char *p = (char *)(top - 64);
p[0] = 'x';
p[1] = '\0';
2024-06-15 16:55:06 +02:00
int fd = open(p, O_RDWR | O_CREATE);
write(fd, p, 1);
close(fd);
fd = open(p, O_RDWR);
p[0] = '\0';
read(fd, p, 1);
if(p[0] != 'x')
exit(1);
}
2021-07-02 20:24:45 +02:00
// does sbrk handle signed int32 wrap-around with
// negative arguments?
void
sbrk8000(char *s)
{
sbrk(0x80000004);
volatile char *top = sbrk(0);
2024-06-15 16:55:06 +02:00
*(top - 1) = *(top - 1) + 1;
2021-07-02 20:24:45 +02:00
}
// regression test. test whether exec() leaks memory if one of the
// arguments is invalid. the test passes if the kernel doesn't panic.
void
badarg(char *s)
{
2024-06-15 16:55:06 +02:00
for(int i = 0; i < 50000; i++) {
char *argv[2];
2024-06-15 16:55:06 +02:00
argv[0] = (char *)0xffffffff;
argv[1] = 0;
exec("echo", argv);
}
2024-06-15 16:55:06 +02:00
exit(0);
}
struct test {
void (*f)(char *);
char *s;
} quicktests[] = {
2024-06-15 16:55:06 +02:00
{ copyin, "copyin" },
{ copyout, "copyout" },
{ copyinstr1, "copyinstr1" },
{ copyinstr2, "copyinstr2" },
{ copyinstr3, "copyinstr3" },
{ rwsbrk, "rwsbrk" },
{ truncate1, "truncate1" },
{ truncate2, "truncate2" },
{ truncate3, "truncate3" },
{ openiputtest, "openiput" },
{ exitiputtest, "exitiput" },
{ iputtest, "iput" },
{ opentest, "opentest" },
{ writetest, "writetest" },
{ writebig, "writebig" },
{ createtest, "createtest" },
{ dirtest, "dirtest" },
{ exectest, "exectest" },
{ pipe1, "pipe1" },
{ killstatus, "killstatus" },
{ preempt, "preempt" },
{ exitwait, "exitwait" },
{ reparent, "reparent" },
{ twochildren, "twochildren" },
{ forkfork, "forkfork" },
{ forkforkfork, "forkforkfork" },
{ reparent2, "reparent2" },
{ mem, "mem" },
{ sharedfd, "sharedfd" },
{ fourfiles, "fourfiles" },
{ createdelete, "createdelete" },
{ unlinkread, "unlinkread" },
{ linktest, "linktest" },
{ concreate, "concreate" },
{ linkunlink, "linkunlink" },
{ subdir, "subdir" },
{ bigwrite, "bigwrite" },
{ bigfile, "bigfile" },
{ fourteen, "fourteen" },
{ rmdot, "rmdot" },
{ dirfile, "dirfile" },
{ iref, "iref" },
{ forktest, "forktest" },
{ sbrkbasic, "sbrkbasic" },
{ sbrkmuch, "sbrkmuch" },
{ kernmem, "kernmem" },
{ MAXVAplus, "MAXVAplus" },
{ sbrkfail, "sbrkfail" },
{ sbrkarg, "sbrkarg" },
{ validatetest, "validatetest" },
{ bsstest, "bsstest" },
{ bigargtest, "bigargtest" },
{ argptest, "argptest" },
{ stacktest, "stacktest" },
{ textwrite, "textwrite" },
{ pgbug, "pgbug" },
{ sbrkbugs, "sbrkbugs" },
{ sbrklast, "sbrklast" },
{ sbrk8000, "sbrk8000" },
{ badarg, "badarg" },
{ 0, 0 },
};
//
// Section with tests that take a fair bit of time
//
// directory that uses indirect blocks
void
bigdir(char *s)
{
enum { N = 500 };
2024-06-15 16:55:06 +02:00
int i, fd;
char name[10];
unlink("bd");
fd = open("bd", O_CREATE);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: bigdir create failed\n", s);
exit(1);
}
close(fd);
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
name[0] = 'x';
name[1] = '0' + (i / 64);
name[2] = '0' + (i % 64);
name[3] = '\0';
2024-06-15 16:55:06 +02:00
if(link("bd", name) != 0) {
printf("%s: bigdir link(bd, %s) failed\n", s, name);
exit(1);
}
}
unlink("bd");
2024-06-15 16:55:06 +02:00
for(i = 0; i < N; i++) {
name[0] = 'x';
name[1] = '0' + (i / 64);
name[2] = '0' + (i % 64);
name[3] = '\0';
2024-06-15 16:55:06 +02:00
if(unlink(name) != 0) {
printf("%s: bigdir unlink failed", s);
exit(1);
}
}
}
// concurrent writes to try to provoke deadlock in the virtio disk
// driver.
void
manywrites(char *s)
{
int nchildren = 4;
int howmany = 30; // increase to look for deadlock
2024-06-15 16:55:06 +02:00
for(int ci = 0; ci < nchildren; ci++) {
int pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
char name[3];
name[0] = 'b';
name[1] = 'a' + ci;
name[2] = '\0';
unlink(name);
2024-06-15 16:55:06 +02:00
for(int iters = 0; iters < howmany; iters++) {
for(int i = 0; i < ci + 1; i++) {
int fd = open(name, O_CREATE | O_RDWR);
2024-06-15 16:55:06 +02:00
if(fd < 0) {
printf("%s: cannot create %s\n", s, name);
exit(1);
}
int sz = sizeof(buf);
int cc = write(fd, buf, sz);
2024-06-15 16:55:06 +02:00
if(cc != sz) {
printf("%s: write(%d) ret %d\n", s, sz, cc);
exit(1);
}
close(fd);
}
unlink(name);
}
unlink(name);
exit(0);
}
}
2024-06-15 16:55:06 +02:00
for(int ci = 0; ci < nchildren; ci++) {
int st = 0;
wait(&st);
if(st != 0)
exit(st);
}
exit(0);
}
// regression test. does write() with an invalid buffer pointer cause
// a block to be allocated for a file that is then not freed when the
// file is deleted? if the kernel has this bug, it will panic: balloc:
// out of blocks. assumed_free may need to be raised to be more than
// the number of free blocks. this test takes a long time.
void
badwrite(char *s)
{
int assumed_free = 600;
2024-06-15 16:55:06 +02:00
unlink("junk");
2024-06-15 16:55:06 +02:00
for(int i = 0; i < assumed_free; i++) {
int fd = open("junk", O_CREATE | O_WRONLY);
if(fd < 0) {
printf("open junk failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
write(fd, (char *)0xffffffffffL, 1);
close(fd);
unlink("junk");
}
2024-06-15 16:55:06 +02:00
int fd = open("junk", O_CREATE | O_WRONLY);
if(fd < 0) {
printf("open junk failed\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(write(fd, "x", 1) != 1) {
printf("write failed\n");
exit(1);
}
close(fd);
unlink("junk");
exit(0);
}
// test the exec() code that cleans up if it runs out
// of memory. it's really a test that such a condition
// doesn't cause a panic.
void
execout(char *s)
{
2024-06-15 16:55:06 +02:00
for(int avail = 0; avail < 15; avail++) {
int pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed\n");
exit(1);
2024-06-15 16:55:06 +02:00
} else if(pid == 0) {
// allocate all of memory.
2024-06-15 16:55:06 +02:00
while(1) {
u64 a = (u64)sbrk(4096);
if(a == 0xffffffffffffffffLL)
break;
2024-06-15 16:55:06 +02:00
*(char *)(a + 4096 - 1) = 1;
}
// free a few pages, in order to let exec() make some
// progress.
for(int i = 0; i < avail; i++)
sbrk(-4096);
2024-06-15 16:55:06 +02:00
close(1);
char *args[] = { "echo", "x", 0 };
exec("echo", args);
exit(0);
} else {
2024-06-15 16:55:06 +02:00
wait((int *)0);
}
}
exit(0);
}
2022-08-10 12:13:52 +02:00
// can the kernel tolerate running out of disk space?
void
diskfull(char *s)
{
int fi;
int done = 0;
unlink("diskfulldir");
2024-06-15 16:55:06 +02:00
for(fi = 0; done == 0; fi++) {
2022-08-10 12:13:52 +02:00
char name[32];
name[0] = 'b';
name[1] = 'i';
name[2] = 'g';
name[3] = '0' + fi;
name[4] = '\0';
unlink(name);
2024-06-15 16:55:06 +02:00
int fd = open(name, O_CREATE | O_RDWR | O_TRUNC);
if(fd < 0) {
2022-08-23 18:26:26 +02:00
// oops, ran out of inodes before running out of blocks.
2022-08-10 12:13:52 +02:00
printf("%s: could not create file %s\n", s, name);
done = 1;
break;
}
2024-06-15 16:55:06 +02:00
for(int i = 0; i < MAXFILE; i++) {
2022-08-10 12:13:52 +02:00
char buf[BSIZE];
2024-06-15 16:55:06 +02:00
if(write(fd, buf, BSIZE) != BSIZE) {
2022-08-10 12:13:52 +02:00
done = 1;
close(fd);
break;
}
}
close(fd);
}
// now that there are no free blocks, test that dirlink()
// merely fails (doesn't panic) if it can't extend
2022-08-23 18:26:26 +02:00
// directory content. one of these file creations
// is expected to fail.
int nzz = 128;
2024-06-15 16:55:06 +02:00
for(int i = 0; i < nzz; i++) {
char name[32];
name[0] = 'z';
name[1] = 'z';
name[2] = '0' + (i / 32);
name[3] = '0' + (i % 32);
name[4] = '\0';
unlink(name);
2024-06-15 16:55:06 +02:00
int fd = open(name, O_CREATE | O_RDWR | O_TRUNC);
2022-08-23 18:26:26 +02:00
if(fd < 0)
break;
close(fd);
}
2022-08-23 18:26:26 +02:00
// this mkdir() is expected to fail.
if(mkdir("diskfulldir") == 0)
printf("%s: mkdir(diskfulldir) unexpectedly succeeded!\n");
unlink("diskfulldir");
2024-06-15 16:55:06 +02:00
for(int i = 0; i < nzz; i++) {
char name[32];
name[0] = 'z';
name[1] = 'z';
name[2] = '0' + (i / 32);
name[3] = '0' + (i % 32);
name[4] = '\0';
unlink(name);
}
2024-06-15 16:55:06 +02:00
for(int i = 0; i < fi; i++) {
2022-08-10 12:13:52 +02:00
char name[32];
name[0] = 'b';
name[1] = 'i';
name[2] = 'g';
name[3] = '0' + i;
name[4] = '\0';
unlink(name);
}
}
2022-08-23 18:26:26 +02:00
void
outofinodes(char *s)
{
2024-06-15 16:55:06 +02:00
int nzz = 32 * 32;
for(int i = 0; i < nzz; i++) {
2022-08-23 18:26:26 +02:00
char name[32];
name[0] = 'z';
name[1] = 'z';
name[2] = '0' + (i / 32);
name[3] = '0' + (i % 32);
name[4] = '\0';
unlink(name);
2024-06-15 16:55:06 +02:00
int fd = open(name, O_CREATE | O_RDWR | O_TRUNC);
if(fd < 0) {
2022-08-23 18:26:26 +02:00
// failure is eventually expected.
break;
}
close(fd);
}
2024-06-15 16:55:06 +02:00
for(int i = 0; i < nzz; i++) {
2022-08-23 18:26:26 +02:00
char name[32];
name[0] = 'z';
name[1] = 'z';
name[2] = '0' + (i / 32);
name[3] = '0' + (i % 32);
name[4] = '\0';
unlink(name);
}
}
struct test slowtests[] = {
2024-06-15 16:55:06 +02:00
{ bigdir, "bigdir" },
{ manywrites, "manywrites" },
{ badwrite, "badwrite" },
{ execout, "execout" },
{ diskfull, "diskfull" },
{ outofinodes, "outofinodes" },
{ 0, 0 },
};
//
// drive tests
//
// run each test in its own process. run returns 1 if child's exit()
// indicates success.
int
2024-06-15 16:55:06 +02:00
run(void f(char *), char *s)
{
int pid;
int xstatus;
printf("test %s: ", s);
if((pid = fork()) < 0) {
printf("runtest: fork error\n");
exit(1);
}
if(pid == 0) {
f(s);
exit(0);
} else {
wait(&xstatus);
2024-06-15 16:55:06 +02:00
if(xstatus != 0)
printf("FAILED\n");
else
printf("OK\n");
return xstatus == 0;
}
}
int
2024-06-15 16:55:06 +02:00
runtests(struct test *tests, char *justone)
{
for(struct test *t = tests; t->s != 0; t++) {
if((justone == 0) || strcmp(t->s, justone) == 0) {
2024-06-15 16:55:06 +02:00
if(!run(t->f, t->s)) {
printf("SOME TESTS FAILED\n");
return 1;
}
}
}
return 0;
}
//
// use sbrk() to count how many free physical memory pages there are.
// touches the pages to force allocation.
// because out of memory with lazy allocation results in the process
// taking a fault and being killed, fork and report back.
//
int
countfree()
{
int fds[2];
2024-06-15 16:55:06 +02:00
if(pipe(fds) < 0) {
printf("pipe() failed in countfree()\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
int pid = fork();
2024-06-15 16:55:06 +02:00
if(pid < 0) {
printf("fork failed in countfree()\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(pid == 0) {
close(fds[0]);
2024-06-15 16:55:06 +02:00
while(1) {
u64 a = (u64)sbrk(4096);
if(a == 0xffffffffffffffff) {
break;
}
// modify the memory to make sure it's really allocated.
*(char *)(a + 4096 - 1) = 1;
// report back one more page.
2024-06-15 16:55:06 +02:00
if(write(fds[1], "x", 1) != 1) {
printf("write() failed in countfree()\n");
exit(1);
}
}
exit(0);
}
close(fds[1]);
int n = 0;
2024-06-15 16:55:06 +02:00
while(1) {
char c;
2024-06-15 16:55:06 +02:00
int cc = read(fds[0], &c, 1);
if(cc < 0) {
printf("read() failed in countfree()\n");
exit(1);
}
if(cc == 0)
break;
n += 1;
}
close(fds[0]);
2024-06-15 16:55:06 +02:00
wait((int *)0);
return n;
}
2019-09-19 21:14:52 +02:00
int
2024-06-15 16:55:06 +02:00
drivetests(int quick, int continuous, char *justone)
{
do {
printf("usertests starting\n");
int free0 = countfree();
int free1 = 0;
2024-06-15 16:55:06 +02:00
if(runtests(quicktests, justone)) {
if(continuous != 2) {
return 1;
}
}
if(!quick) {
2024-06-15 16:55:06 +02:00
if(justone == 0)
printf("usertests slow tests starting\n");
2024-06-15 16:55:06 +02:00
if(runtests(slowtests, justone)) {
if(continuous != 2) {
return 1;
}
}
}
if((free1 = countfree()) < free0) {
printf("FAILED -- lost some free pages %d (out of %d)\n", free1, free0);
if(continuous != 2) {
return 1;
}
}
} while(continuous);
return 0;
2019-07-23 00:08:52 +02:00
}
int
2006-07-29 00:33:07 +02:00
main(int argc, char *argv[])
2006-06-27 16:35:53 +02:00
{
2024-06-15 16:55:06 +02:00
int continuous = 0;
int quick = 0;
char *justone = 0;
2024-06-15 16:55:06 +02:00
if(argc == 2 && strcmp(argv[1], "-q") == 0) {
quick = 1;
2024-06-15 16:55:06 +02:00
} else if(argc == 2 && strcmp(argv[1], "-c") == 0) {
continuous = 1;
2024-06-15 16:55:06 +02:00
} else if(argc == 2 && strcmp(argv[1], "-C") == 0) {
continuous = 2;
2024-06-15 16:55:06 +02:00
} else if(argc == 2 && argv[1][0] != '-') {
justone = argv[1];
2024-06-15 16:55:06 +02:00
} else if(argc > 1) {
printf("Usage: usertests [-c] [-C] [-q] [testname]\n");
exit(1);
}
2024-06-15 16:55:06 +02:00
if(drivetests(quick, continuous, justone)) {
exit(1);
}
printf("ALL TESTS PASSED\n");
exit(0);
2006-06-27 16:35:53 +02:00
}