Random RSA/miller-rabin/euclidean
This commit is contained in:
		
							parent
							
								
									74d60a2cb5
								
							
						
					
					
						commit
						ffad3d5118
					
				
					 3 changed files with 270 additions and 0 deletions
				
			
		
							
								
								
									
										78
									
								
								py/milrab.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										78
									
								
								py/milrab.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,78 @@
 | 
			
		|||
import random
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def lcg(seed, a=1664525, c=1013904223, m=2**32):
 | 
			
		||||
    while True:
 | 
			
		||||
        seed = (a * seed + c) % m
 | 
			
		||||
        yield seed  # Produces an infinite stream of numbers
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
rand_gen = lcg(42)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def randint(a, b) -> int:
 | 
			
		||||
    return next(rand_gen) % (b - a + 1) + a
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def milrab(n: int, iter: int = 5) -> bool:
 | 
			
		||||
    "Miller-Rabin probabilistic primality test"
 | 
			
		||||
 | 
			
		||||
    # These should need no further introduction
 | 
			
		||||
    if n < 2:
 | 
			
		||||
        return False
 | 
			
		||||
    if n in (2, 3):
 | 
			
		||||
        return True
 | 
			
		||||
    if n % 2 == 0:
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
    # Keep in mind that here we know that m will be an even number
 | 
			
		||||
    m = n - 1
 | 
			
		||||
    k = 0
 | 
			
		||||
 | 
			
		||||
    # Executed at least once
 | 
			
		||||
    while m % 2 == 0:
 | 
			
		||||
        m //= 2  # Int divide for int result type
 | 
			
		||||
        k += 1
 | 
			
		||||
 | 
			
		||||
    for _ in range(iter):
 | 
			
		||||
        a = randint(2, n - 2)  # Any integer in range 1 < a < n - 1
 | 
			
		||||
        b = pow(a, m, n)
 | 
			
		||||
 | 
			
		||||
        # Valid only for the first iteration
 | 
			
		||||
        if b == 1 or b == n - 1:
 | 
			
		||||
            continue  # Likely a prime
 | 
			
		||||
 | 
			
		||||
        # The rest, we start from 0
 | 
			
		||||
        for _ in range(k - 1):
 | 
			
		||||
            b = pow(b, 2, n)
 | 
			
		||||
            if b == n - 1:
 | 
			
		||||
                break  # May be prime
 | 
			
		||||
            if b == 1:  # For sure not prime
 | 
			
		||||
                return False
 | 
			
		||||
 | 
			
		||||
        else:  # Python way to branch if loop never calls break
 | 
			
		||||
            return False
 | 
			
		||||
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
assert milrab(53, 1) == True
 | 
			
		||||
assert milrab(53, 2) == True
 | 
			
		||||
assert milrab(53, 3) == True
 | 
			
		||||
assert milrab(53, 4) == True
 | 
			
		||||
assert milrab(203, 10) == False
 | 
			
		||||
 | 
			
		||||
assert milrab(10, 4) == False
 | 
			
		||||
 | 
			
		||||
start = time.perf_counter()
 | 
			
		||||
primes = []
 | 
			
		||||
for p in range(2**15, 2**16):
 | 
			
		||||
    if milrab(p, 10):
 | 
			
		||||
        primes.append(p)
 | 
			
		||||
end = time.perf_counter()
 | 
			
		||||
print(f"Time taken: {end - start:.6f} seconds")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
for k in range(10):
 | 
			
		||||
    assert milrab(53, k) == True
 | 
			
		||||
							
								
								
									
										95
									
								
								py/rsa.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										95
									
								
								py/rsa.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,95 @@
 | 
			
		|||
from Crypto.Util.number import getPrime, inverse
 | 
			
		||||
import random
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def miller_rabin(n, k=5):
 | 
			
		||||
    if n == 2 or n == 3:
 | 
			
		||||
        return True
 | 
			
		||||
    if n <= 1 or n % 2 == 0:
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
    # Write n-1 as d * 2^r
 | 
			
		||||
    r = 0
 | 
			
		||||
    d = n - 1
 | 
			
		||||
    while d % 2 == 0:
 | 
			
		||||
        d //= 2
 | 
			
		||||
        r += 1
 | 
			
		||||
 | 
			
		||||
    # Perform the test k times
 | 
			
		||||
    for _ in range(k):
 | 
			
		||||
        a = random.randint(2, n - 2)
 | 
			
		||||
        x = pow(a, d, n)  # x = a^d % n
 | 
			
		||||
        if x == 1 or x == n - 1:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Keep squaring x and check for n-1
 | 
			
		||||
        for _ in range(r - 1):
 | 
			
		||||
            x = pow(x, 2, n)
 | 
			
		||||
            if x == n - 1:
 | 
			
		||||
                break
 | 
			
		||||
        else:
 | 
			
		||||
            return False
 | 
			
		||||
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Euclidean algorithm
 | 
			
		||||
def extended_gcd(a, b):
 | 
			
		||||
    """Computes the GCD of a and b, along with coefficients x and y such that ax + by = gcd(a, b)."""
 | 
			
		||||
    if b == 0:
 | 
			
		||||
        return a, 1, 0
 | 
			
		||||
 | 
			
		||||
    g, x1, y1 = extended_gcd(b, a % b)
 | 
			
		||||
 | 
			
		||||
    x = y1
 | 
			
		||||
    y = x1 - (a // b) * y1
 | 
			
		||||
    return g, x, y
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mod_inverse(a, m):
 | 
			
		||||
    g, x, _ = extended_gcd(a, m)
 | 
			
		||||
    if g != 1:  # a and m must be coprime
 | 
			
		||||
        raise ValueError(f"{a} has no modular inverse modulo {m}")
 | 
			
		||||
    return x % m
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def my_prime(bits: int = 1024) -> int:
 | 
			
		||||
    i = random.randint(1 << (bits - 1), 1 << bits)
 | 
			
		||||
    return i if miller_rabin(i) else my_prime(bits)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
print(my_prime(8))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Key Generation
 | 
			
		||||
def generate_keys(bits: int = 1024) -> tuple[tuple[int, int], tuple[int, int]]:
 | 
			
		||||
    p = my_prime(bits // 2)
 | 
			
		||||
    q = my_prime(bits // 2)
 | 
			
		||||
    n = p * q
 | 
			
		||||
    phi = (p - 1) * (q - 1)
 | 
			
		||||
    e = 65537  # Common public exponent
 | 
			
		||||
    d = inverse(e, phi)
 | 
			
		||||
    return (e, n), (d, n)  # Public, Private keys
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Encryption
 | 
			
		||||
def encrypt(msg: int, pubkey: tuple[int, int]) -> int:
 | 
			
		||||
    e, n = pubkey
 | 
			
		||||
    return pow(msg, e, n)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Decryption
 | 
			
		||||
def decrypt(cipher: int, privkey: tuple[int, int]) -> int:
 | 
			
		||||
    d, n = privkey
 | 
			
		||||
    return pow(cipher, d, n)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Example Usage
 | 
			
		||||
pub, priv = generate_keys()
 | 
			
		||||
pub = (177349751, 2144805071)
 | 
			
		||||
priv = (1698859991, 2144805071)
 | 
			
		||||
message = 42
 | 
			
		||||
ciphertext = encrypt(message, pub)
 | 
			
		||||
plaintext = decrypt(ciphertext, priv)
 | 
			
		||||
 | 
			
		||||
print(f"Message: {message}, Ciphertext: {ciphertext}, Decrypted: {plaintext}")
 | 
			
		||||
							
								
								
									
										97
									
								
								py/sketch.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										97
									
								
								py/sketch.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,97 @@
 | 
			
		|||
import random
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def miller_rabin(n, k=5):
 | 
			
		||||
    if n == 2 or n == 3:
 | 
			
		||||
        return True
 | 
			
		||||
    if n <= 1 or n % 2 == 0:
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
    # Write n-1 as d * 2^r
 | 
			
		||||
    r = 0
 | 
			
		||||
    d = n - 1
 | 
			
		||||
    while d % 2 == 0:
 | 
			
		||||
        d //= 2
 | 
			
		||||
        r += 1
 | 
			
		||||
 | 
			
		||||
    # Perform the test k times
 | 
			
		||||
    for _ in range(k):
 | 
			
		||||
        a = random.randint(2, n - 2)
 | 
			
		||||
        x = pow(a, d, n)  # x = a^d % n
 | 
			
		||||
        if x == 1 or x == n - 1:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Keep squaring x and check for n-1
 | 
			
		||||
        for _ in range(r - 1):
 | 
			
		||||
            x = pow(x, 2, n)
 | 
			
		||||
            if x == n - 1:
 | 
			
		||||
                break
 | 
			
		||||
        else:
 | 
			
		||||
            return False
 | 
			
		||||
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
assert miller_rabin(0) == False
 | 
			
		||||
assert miller_rabin(1) == False
 | 
			
		||||
assert miller_rabin(2) == True
 | 
			
		||||
assert miller_rabin(3) == True
 | 
			
		||||
assert miller_rabin(4) == False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def primitive_isprime(num):
 | 
			
		||||
    for n in range(2, int(num**0.5) + 1):
 | 
			
		||||
        if num % n == 0:
 | 
			
		||||
            return False
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
assert not miller_rabin(8)
 | 
			
		||||
assert miller_rabin(11)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mod_inverse(a, m):
 | 
			
		||||
    return pow(a, -1, m)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
assert mod_inverse(3, 7) == 5
 | 
			
		||||
assert mod_inverse(10, 17) == 12
 | 
			
		||||
assert mod_inverse(7, 13) == 2
 | 
			
		||||
assert mod_inverse(65537, 3445361432) is not None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gcd(x, y):
 | 
			
		||||
    while y:
 | 
			
		||||
        x, y = y, x % y
 | 
			
		||||
    return abs(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
assert gcd(3, 9) == 3
 | 
			
		||||
assert gcd(3, 4) == 1
 | 
			
		||||
 | 
			
		||||
p = 60737
 | 
			
		||||
q = 56713
 | 
			
		||||
assert miller_rabin(p)
 | 
			
		||||
assert miller_rabin(q)
 | 
			
		||||
 | 
			
		||||
n = p * q
 | 
			
		||||
phi_n = (p - 1) * (q - 1)
 | 
			
		||||
assert not miller_rabin(n)
 | 
			
		||||
assert not miller_rabin(phi_n)
 | 
			
		||||
 | 
			
		||||
e = 65537
 | 
			
		||||
assert e == (1 << 16) | 0x1
 | 
			
		||||
assert gcd(e, phi_n) == 1
 | 
			
		||||
 | 
			
		||||
d = mod_inverse(e, phi_n)
 | 
			
		||||
assert d is not None and (e * d) % phi_n == 1
 | 
			
		||||
 | 
			
		||||
m = 69
 | 
			
		||||
 | 
			
		||||
c = pow(69, e, n)
 | 
			
		||||
dec = pow(c, d, n)
 | 
			
		||||
 | 
			
		||||
print("Ciphertext: ", c)
 | 
			
		||||
print("Decrypted: ", dec)
 | 
			
		||||
 | 
			
		||||
assert dec == m
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue